A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants
In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-07, Vol.12 (14), p.3136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 3136 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Hosseini, Seyed Morteza Maghami, Mohammad Hossein Amiri, Parviz Sawan, Mohamad |
description | In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches are used in the structure of the designed circuit to provide high power conversion efficiency. In addition, by using two comparators, the reverse leakage current is somehow eliminated, resulting in a higher increase in the power efficiency. By tying the source and bulk terminals of the utilized transistors, the body effect problem has been solved, and by connecting the p-substrate to the ground, which is the lowest voltage in the circuit, the latch-up phenomenon is eliminated without any extra circuit. The proposed rectifier is implemented and post-layout simulated in a 0.18 µm standard CMOS technology. According to the simulation results, 1.205 V output DC voltage is achieved from an AC input signal with the peak-to-peak amplitude of 1 V at the operating frequency of 13.56 MHz with a 3 kΩ load resistance. The total active area of the designed circuit is 0.167 mm2 with a maximum power conversion efficiency of 98.2%, output power in the range of 0.5–1.5 mW, and voltage conversion ratio of 120%. |
doi_str_mv | 10.3390/electronics12143136 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2843054003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759040707</galeid><sourcerecordid>A759040707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-adcab406c35f55353d87248732ebde523ef3ef2807d236624e4e4fec18a45c053</originalsourceid><addsrcrecordid>eNptUVlLAzEQXkTBUvsLfAn46tZsZrPHY1vUFloq1uNxSbOTkrK7qcmWUn-9qRVU6MzAXN9cTBBcR7QPkNM7rFC21jRauohFMUSQnAUdRtM8zFnOzv_Yl0HPuTX1lEeQAe0EzYBE0OcJmY0_ydTswiezQ3tLFrpZVRguWrFCMprNF-TNVAcnHBrjWp8lz36sVhotUcaSd239Is5Ve_LdAksy1KbGUktRkUm9qUTTuqvgQonKYe9Hd4PXh_uX0Ticzh8no8E0lP6kNhSlFMuYJhK44hw4lFnK4iwFhssSOQNUXlhG05JBkrAYPSuUUSZiLimHbnBz7Lux5mOLri3WZmsbP7JgWQyUx5TCL2olKix0o0xrhay1k8Ug5TmNaUpTj-qfQHkusdbSNKi0j_8rgGOBtMY5i6rYWF0Luy8iWhxeVpx4GXwB9XmJyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843054003</pqid></control><display><type>article</type><title>A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hosseini, Seyed Morteza ; Maghami, Mohammad Hossein ; Amiri, Parviz ; Sawan, Mohamad</creator><creatorcontrib>Hosseini, Seyed Morteza ; Maghami, Mohammad Hossein ; Amiri, Parviz ; Sawan, Mohamad</creatorcontrib><description>In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches are used in the structure of the designed circuit to provide high power conversion efficiency. In addition, by using two comparators, the reverse leakage current is somehow eliminated, resulting in a higher increase in the power efficiency. By tying the source and bulk terminals of the utilized transistors, the body effect problem has been solved, and by connecting the p-substrate to the ground, which is the lowest voltage in the circuit, the latch-up phenomenon is eliminated without any extra circuit. The proposed rectifier is implemented and post-layout simulated in a 0.18 µm standard CMOS technology. According to the simulation results, 1.205 V output DC voltage is achieved from an AC input signal with the peak-to-peak amplitude of 1 V at the operating frequency of 13.56 MHz with a 3 kΩ load resistance. The total active area of the designed circuit is 0.167 mm2 with a maximum power conversion efficiency of 98.2%, output power in the range of 0.5–1.5 mW, and voltage conversion ratio of 120%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12143136</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Charge pumps ; Circuit design ; Circuits ; CMOS ; Cochlear implants ; Complementary metal oxide semiconductors ; Conversion ratio ; Design and construction ; Diodes ; Efficiency ; Electric current rectifiers ; Electric potential ; Energy consumption ; Energy conversion efficiency ; Implants, Artificial ; Latch-up ; Leakage current ; Load resistance ; Maximum power ; Medical equipment ; Methods ; Power supply ; Prosthesis ; Rectifier instruments ; Rectifiers ; Substrates ; Surgical implants ; Switches ; Transistors ; Transplants & implants ; Voltage</subject><ispartof>Electronics (Basel), 2023-07, Vol.12 (14), p.3136</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-adcab406c35f55353d87248732ebde523ef3ef2807d236624e4e4fec18a45c053</cites><orcidid>0000-0002-4137-7272 ; 0000-0002-7932-9161 ; 0009-0008-9975-9792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hosseini, Seyed Morteza</creatorcontrib><creatorcontrib>Maghami, Mohammad Hossein</creatorcontrib><creatorcontrib>Amiri, Parviz</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><title>A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants</title><title>Electronics (Basel)</title><description>In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches are used in the structure of the designed circuit to provide high power conversion efficiency. In addition, by using two comparators, the reverse leakage current is somehow eliminated, resulting in a higher increase in the power efficiency. By tying the source and bulk terminals of the utilized transistors, the body effect problem has been solved, and by connecting the p-substrate to the ground, which is the lowest voltage in the circuit, the latch-up phenomenon is eliminated without any extra circuit. The proposed rectifier is implemented and post-layout simulated in a 0.18 µm standard CMOS technology. According to the simulation results, 1.205 V output DC voltage is achieved from an AC input signal with the peak-to-peak amplitude of 1 V at the operating frequency of 13.56 MHz with a 3 kΩ load resistance. The total active area of the designed circuit is 0.167 mm2 with a maximum power conversion efficiency of 98.2%, output power in the range of 0.5–1.5 mW, and voltage conversion ratio of 120%.</description><subject>Charge pumps</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>CMOS</subject><subject>Cochlear implants</subject><subject>Complementary metal oxide semiconductors</subject><subject>Conversion ratio</subject><subject>Design and construction</subject><subject>Diodes</subject><subject>Efficiency</subject><subject>Electric current rectifiers</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Implants, Artificial</subject><subject>Latch-up</subject><subject>Leakage current</subject><subject>Load resistance</subject><subject>Maximum power</subject><subject>Medical equipment</subject><subject>Methods</subject><subject>Power supply</subject><subject>Prosthesis</subject><subject>Rectifier instruments</subject><subject>Rectifiers</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Switches</subject><subject>Transistors</subject><subject>Transplants & implants</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUVlLAzEQXkTBUvsLfAn46tZsZrPHY1vUFloq1uNxSbOTkrK7qcmWUn-9qRVU6MzAXN9cTBBcR7QPkNM7rFC21jRauohFMUSQnAUdRtM8zFnOzv_Yl0HPuTX1lEeQAe0EzYBE0OcJmY0_ydTswiezQ3tLFrpZVRguWrFCMprNF-TNVAcnHBrjWp8lz36sVhotUcaSd239Is5Ve_LdAksy1KbGUktRkUm9qUTTuqvgQonKYe9Hd4PXh_uX0Ticzh8no8E0lP6kNhSlFMuYJhK44hw4lFnK4iwFhssSOQNUXlhG05JBkrAYPSuUUSZiLimHbnBz7Lux5mOLri3WZmsbP7JgWQyUx5TCL2olKix0o0xrhay1k8Ug5TmNaUpTj-qfQHkusdbSNKi0j_8rgGOBtMY5i6rYWF0Luy8iWhxeVpx4GXwB9XmJyA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Hosseini, Seyed Morteza</creator><creator>Maghami, Mohammad Hossein</creator><creator>Amiri, Parviz</creator><creator>Sawan, Mohamad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4137-7272</orcidid><orcidid>https://orcid.org/0000-0002-7932-9161</orcidid><orcidid>https://orcid.org/0009-0008-9975-9792</orcidid></search><sort><creationdate>20230701</creationdate><title>A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants</title><author>Hosseini, Seyed Morteza ; Maghami, Mohammad Hossein ; Amiri, Parviz ; Sawan, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-adcab406c35f55353d87248732ebde523ef3ef2807d236624e4e4fec18a45c053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge pumps</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>CMOS</topic><topic>Cochlear implants</topic><topic>Complementary metal oxide semiconductors</topic><topic>Conversion ratio</topic><topic>Design and construction</topic><topic>Diodes</topic><topic>Efficiency</topic><topic>Electric current rectifiers</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Implants, Artificial</topic><topic>Latch-up</topic><topic>Leakage current</topic><topic>Load resistance</topic><topic>Maximum power</topic><topic>Medical equipment</topic><topic>Methods</topic><topic>Power supply</topic><topic>Prosthesis</topic><topic>Rectifier instruments</topic><topic>Rectifiers</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Switches</topic><topic>Transistors</topic><topic>Transplants & implants</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Seyed Morteza</creatorcontrib><creatorcontrib>Maghami, Mohammad Hossein</creatorcontrib><creatorcontrib>Amiri, Parviz</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, Seyed Morteza</au><au>Maghami, Mohammad Hossein</au><au>Amiri, Parviz</au><au>Sawan, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>12</volume><issue>14</issue><spage>3136</spage><pages>3136-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches are used in the structure of the designed circuit to provide high power conversion efficiency. In addition, by using two comparators, the reverse leakage current is somehow eliminated, resulting in a higher increase in the power efficiency. By tying the source and bulk terminals of the utilized transistors, the body effect problem has been solved, and by connecting the p-substrate to the ground, which is the lowest voltage in the circuit, the latch-up phenomenon is eliminated without any extra circuit. The proposed rectifier is implemented and post-layout simulated in a 0.18 µm standard CMOS technology. According to the simulation results, 1.205 V output DC voltage is achieved from an AC input signal with the peak-to-peak amplitude of 1 V at the operating frequency of 13.56 MHz with a 3 kΩ load resistance. The total active area of the designed circuit is 0.167 mm2 with a maximum power conversion efficiency of 98.2%, output power in the range of 0.5–1.5 mW, and voltage conversion ratio of 120%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12143136</doi><orcidid>https://orcid.org/0000-0002-4137-7272</orcidid><orcidid>https://orcid.org/0000-0002-7932-9161</orcidid><orcidid>https://orcid.org/0009-0008-9975-9792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-07, Vol.12 (14), p.3136 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2843054003 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Charge pumps Circuit design Circuits CMOS Cochlear implants Complementary metal oxide semiconductors Conversion ratio Design and construction Diodes Efficiency Electric current rectifiers Electric potential Energy consumption Energy conversion efficiency Implants, Artificial Latch-up Leakage current Load resistance Maximum power Medical equipment Methods Power supply Prosthesis Rectifier instruments Rectifiers Substrates Surgical implants Switches Transistors Transplants & implants Voltage |
title | A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2013.56%20MHz%20Low-Power,%20Single-Stage%20CMOS%20Voltage-Boosting%20Rectifier%20for%20Wirelessly%20Powered%20Biomedical%20Implants&rft.jtitle=Electronics%20(Basel)&rft.au=Hosseini,%20Seyed%20Morteza&rft.date=2023-07-01&rft.volume=12&rft.issue=14&rft.spage=3136&rft.pages=3136-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12143136&rft_dat=%3Cgale_proqu%3EA759040707%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843054003&rft_id=info:pmid/&rft_galeid=A759040707&rfr_iscdi=true |