Structural and Mechanical Properties of DLC/TiN Coatings on Carbide for Wood-Cutting Applications

In this work, the diamond-like carbon and titanium nitride (DLC/TiN) multilayer coatings were prepared on a cemented tungsten carbide substrate (WC—3 wt.% Co) using the cathodic vacuum arc physical vapor deposition (Arc-PVD) method and pulsed Arc-PVD method with a graphite cathode for the deposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-07, Vol.13 (7), p.1192
Hauptverfasser: Chayeuski, Vadzim, Zhylinski, Valery, Kazachenko, Victor, Tarasevich, Aleksandr, Taleb, Abdelhafed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the diamond-like carbon and titanium nitride (DLC/TiN) multilayer coatings were prepared on a cemented tungsten carbide substrate (WC—3 wt.% Co) using the cathodic vacuum arc physical vapor deposition (Arc-PVD) method and pulsed Arc-PVD method with a graphite cathode for the deposition of TiN and carbon layers, respectively. The structural and mechanical properties of the prepared coatings were studied, and different techniques, such as scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, and microindentation techniques investigated their microstructure, composition, and phases. The prepared coatings had a multilayer structure with distinct phases of DLC, TiN, and carbide substrate. The potentiodynamic polarization method (PDP) was performed for the DLC/TiN multilayer coatings in 3% NaCl solution to evaluate the corrosion resistance of the prepared coatings. It has been shown that the DLC layer provided the coating with a polarization resistance of 564.46 kΩ. Moreover, it has been demonstrated that the DLC/TiN coatings had a high hardness of 38.7–40.4 GPa, which can help to extend the wood-cutting tools’ life.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13071192