Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations
Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travellin...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-07, Vol.968, Article A6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 968 |
creator | Rouhi, A. Fu, M.K. Chandran, D. Zampiron, A. Smits, A.J. Marusic, I. |
description | Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the DR at friction Reynolds numbers $Re_\tau = 951$ and $4000$. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence DR, is found to change with the near-wall Stokes layer protrusion height $\ell _{0.01}$. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the DR increases as $\ell _{0.01}$ increases up to $30$ viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in DR with increasing $\ell _{0.01}$. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any DR savings. This motivates the study of the outer-scaled actuation pathway in Part 2, where DR is achieved through actuating the outer-scaled motions. |
doi_str_mv | 10.1017/jfm.2023.499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2842905302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_499</cupid><sourcerecordid>2842905302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-64e6904a51a8bc0ca56b1a93adfb328fc1eda5a133988aad4113e5d96b0344763</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOI7u_AEBt7bem6SPLGXwBQMqjOtw26SlQx9j0jLMv7eDA25cnc13zoGPsVuEGAGzh23VxQKEjJXWZ2yBKtVRlqrknC0AhIgQBVyyqxC2AChBZwv2uZl8MbWuH7n1VHPv7FSOzdDz4sDDjvp9ExzfU9vyavBl09cx_yA_coz5mnztImftTDbd1NKxF67ZRUVtcDenXLKv56fN6jVav7-8rR7XUSkVjFGqXKpBUYKUFyWUlKQFkpZkq0KKvCrRWUoIpdR5TmQVonSJ1WkBUqkslUt297u788P35MJotsPk-_nSiFwJDYmcVSzZ_S9V-iEE7yqz801H_mAQzFGamaWZozQzS5vx-IRTV_jG1u5v9d_CD1eTblQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842905302</pqid></control><display><type>article</type><title>Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Rouhi, A. ; Fu, M.K. ; Chandran, D. ; Zampiron, A. ; Smits, A.J. ; Marusic, I.</creator><creatorcontrib>Rouhi, A. ; Fu, M.K. ; Chandran, D. ; Zampiron, A. ; Smits, A.J. ; Marusic, I.</creatorcontrib><description>Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the DR at friction Reynolds numbers $Re_\tau = 951$ and $4000$. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence DR, is found to change with the near-wall Stokes layer protrusion height $\ell _{0.01}$. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the DR increases as $\ell _{0.01}$ increases up to $30$ viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in DR with increasing $\ell _{0.01}$. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any DR savings. This motivates the study of the outer-scaled actuation pathway in Part 2, where DR is achieved through actuating the outer-scaled motions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.499</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Actuation ; Attenuation ; Channel flow ; Dimensional analysis ; Drag reduction ; Flow control ; Fluid flow ; Fluid mechanics ; Friction ; JFM Papers ; Large eddy simulation ; Oceanic eddies ; Parameters ; Reynolds number ; Shear strain ; Shear stress ; Simulation ; Traveling waves ; Turbulence ; Velocity ; Viscous sublayers ; Vortices ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2023-07, Vol.968, Article A6</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-64e6904a51a8bc0ca56b1a93adfb328fc1eda5a133988aad4113e5d96b0344763</citedby><cites>FETCH-LOGICAL-c340t-64e6904a51a8bc0ca56b1a93adfb328fc1eda5a133988aad4113e5d96b0344763</cites><orcidid>0000-0002-7837-418X ; 0000-0003-2700-8435 ; 0000-0003-1342-3785 ; 0000-0002-3883-8648 ; 0000-0001-8093-9015 ; 0000-0003-3949-7838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023004998/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Rouhi, A.</creatorcontrib><creatorcontrib>Fu, M.K.</creatorcontrib><creatorcontrib>Chandran, D.</creatorcontrib><creatorcontrib>Zampiron, A.</creatorcontrib><creatorcontrib>Smits, A.J.</creatorcontrib><creatorcontrib>Marusic, I.</creatorcontrib><title>Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the DR at friction Reynolds numbers $Re_\tau = 951$ and $4000$. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence DR, is found to change with the near-wall Stokes layer protrusion height $\ell _{0.01}$. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the DR increases as $\ell _{0.01}$ increases up to $30$ viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in DR with increasing $\ell _{0.01}$. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any DR savings. This motivates the study of the outer-scaled actuation pathway in Part 2, where DR is achieved through actuating the outer-scaled motions.</description><subject>Actuation</subject><subject>Attenuation</subject><subject>Channel flow</subject><subject>Dimensional analysis</subject><subject>Drag reduction</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Friction</subject><subject>JFM Papers</subject><subject>Large eddy simulation</subject><subject>Oceanic eddies</subject><subject>Parameters</subject><subject>Reynolds number</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Traveling waves</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Viscous sublayers</subject><subject>Vortices</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLxDAUhYMoOI7u_AEBt7bem6SPLGXwBQMqjOtw26SlQx9j0jLMv7eDA25cnc13zoGPsVuEGAGzh23VxQKEjJXWZ2yBKtVRlqrknC0AhIgQBVyyqxC2AChBZwv2uZl8MbWuH7n1VHPv7FSOzdDz4sDDjvp9ExzfU9vyavBl09cx_yA_coz5mnztImftTDbd1NKxF67ZRUVtcDenXLKv56fN6jVav7-8rR7XUSkVjFGqXKpBUYKUFyWUlKQFkpZkq0KKvCrRWUoIpdR5TmQVonSJ1WkBUqkslUt297u788P35MJotsPk-_nSiFwJDYmcVSzZ_S9V-iEE7yqz801H_mAQzFGamaWZozQzS5vx-IRTV_jG1u5v9d_CD1eTblQ</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Rouhi, A.</creator><creator>Fu, M.K.</creator><creator>Chandran, D.</creator><creator>Zampiron, A.</creator><creator>Smits, A.J.</creator><creator>Marusic, I.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7837-418X</orcidid><orcidid>https://orcid.org/0000-0003-2700-8435</orcidid><orcidid>https://orcid.org/0000-0003-1342-3785</orcidid><orcidid>https://orcid.org/0000-0002-3883-8648</orcidid><orcidid>https://orcid.org/0000-0001-8093-9015</orcidid><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid></search><sort><creationdate>20230728</creationdate><title>Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations</title><author>Rouhi, A. ; Fu, M.K. ; Chandran, D. ; Zampiron, A. ; Smits, A.J. ; Marusic, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-64e6904a51a8bc0ca56b1a93adfb328fc1eda5a133988aad4113e5d96b0344763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Attenuation</topic><topic>Channel flow</topic><topic>Dimensional analysis</topic><topic>Drag reduction</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Friction</topic><topic>JFM Papers</topic><topic>Large eddy simulation</topic><topic>Oceanic eddies</topic><topic>Parameters</topic><topic>Reynolds number</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Traveling waves</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Viscous sublayers</topic><topic>Vortices</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouhi, A.</creatorcontrib><creatorcontrib>Fu, M.K.</creatorcontrib><creatorcontrib>Chandran, D.</creatorcontrib><creatorcontrib>Zampiron, A.</creatorcontrib><creatorcontrib>Smits, A.J.</creatorcontrib><creatorcontrib>Marusic, I.</creatorcontrib><collection>CUP_剑桥大学出版社OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouhi, A.</au><au>Fu, M.K.</au><au>Chandran, D.</au><au>Zampiron, A.</au><au>Smits, A.J.</au><au>Marusic, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-07-28</date><risdate>2023</risdate><volume>968</volume><artnum>A6</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the DR at friction Reynolds numbers $Re_\tau = 951$ and $4000$. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence DR, is found to change with the near-wall Stokes layer protrusion height $\ell _{0.01}$. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the DR increases as $\ell _{0.01}$ increases up to $30$ viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in DR with increasing $\ell _{0.01}$. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any DR savings. This motivates the study of the outer-scaled actuation pathway in Part 2, where DR is achieved through actuating the outer-scaled motions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.499</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-7837-418X</orcidid><orcidid>https://orcid.org/0000-0003-2700-8435</orcidid><orcidid>https://orcid.org/0000-0003-1342-3785</orcidid><orcidid>https://orcid.org/0000-0002-3883-8648</orcidid><orcidid>https://orcid.org/0000-0001-8093-9015</orcidid><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-07, Vol.968, Article A6 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2842905302 |
source | Cambridge Journals - Connect here FIRST to enable access |
subjects | Actuation Attenuation Channel flow Dimensional analysis Drag reduction Flow control Fluid flow Fluid mechanics Friction JFM Papers Large eddy simulation Oceanic eddies Parameters Reynolds number Shear strain Shear stress Simulation Traveling waves Turbulence Velocity Viscous sublayers Vortices Wavelengths |
title | Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20drag%20reduction%20by%20spanwise%20wall%20forcing.%20Part%201.%20Large-eddy%20simulations&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rouhi,%20A.&rft.date=2023-07-28&rft.volume=968&rft.artnum=A6&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.499&rft_dat=%3Cproquest_cross%3E2842905302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842905302&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_499&rfr_iscdi=true |