An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process

Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-8
Hauptverfasser: Hsieh, Yu-Ming, Lin, Chin-Yi, Wilch, Jan, Vogel-Heuser, Birgit, Lin, Yu-Chen, Lin, Yu-Chuan, Hung, Min-Hsiung, Cheng, Fan-Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 9
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Hsieh, Yu-Ming
Lin, Chin-Yi
Wilch, Jan
Vogel-Heuser, Birgit
Lin, Yu-Chen
Lin, Yu-Chuan
Hung, Min-Hsiung
Cheng, Fan-Tien
description Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.
doi_str_mv 10.1109/LRA.2023.3295237
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2842171616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10182293</ieee_id><sourcerecordid>2842171616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EElXpzsBgiTnFH4mdjFFFoVIRiJbZsl27dZXExXZA_fekKkOXd99w7nvSAeAeoynGqHpaftZTggidUlIVhPIrMBomzyhn7PpivwWTGPcIIVwQTqtiBFzdwUWXTNO4rekSnEudfDjCuk--lcn5Dq6OMZkW_rq0g299k9yPDE4mA9euNXBlgjMR1s3Wh4FoofUBznbuAD-CV67bnlKbGO_AjZVNNJP_HIOv-fN69pot318Ws3qZaZIXKbNaMqU2lS03paVE59yWFmOl9AaxwnKNCqwozVVhGZdWG6QQxYworRUxmtIxeDzfPQT_3ZuYxN73oRteClLmBHPMMBsodKZ08DEGY8UhuFaGo8BInJyKwak4ORX_TofKw7nijDEXOC4JqSj9A1vqdGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842171616</pqid></control><display><type>article</type><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><source>IEEE Electronic Library (IEL)</source><creator>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</creator><creatorcontrib>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</creatorcontrib><description>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3295237</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automation ; Chip probing ; Conductivity ; Electrical resistivity ; Indicators ; Integrated circuits ; Intelligent Factory Automation (iFA) ; Manufacturing ; Multivariate analysis ; Multivariate Version of Time Series Prediction (TSP&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;MVA ) ; Needles ; Polishes ; Prediction algorithms ; Predictive maintenance ; Predictive models ; Probes ; Remaining Useful Life (RUL) ; Time series ; Time series analysis</subject><ispartof>IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</cites><orcidid>0000-0002-3037-0104 ; 0000-0003-2458-471X ; 0000-0003-0283-2495 ; 0000-0003-2785-8819 ; 0000-0001-8201-223X ; 0000-0002-5308-8531 ; 0000-0003-1707-8800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10182293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10182293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Yu-Ming</creatorcontrib><creatorcontrib>Lin, Chin-Yi</creatorcontrib><creatorcontrib>Wilch, Jan</creatorcontrib><creatorcontrib>Vogel-Heuser, Birgit</creatorcontrib><creatorcontrib>Lin, Yu-Chen</creatorcontrib><creatorcontrib>Lin, Yu-Chuan</creatorcontrib><creatorcontrib>Hung, Min-Hsiung</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Chip probing</subject><subject>Conductivity</subject><subject>Electrical resistivity</subject><subject>Indicators</subject><subject>Integrated circuits</subject><subject>Intelligent Factory Automation (iFA)</subject><subject>Manufacturing</subject><subject>Multivariate analysis</subject><subject>Multivariate Version of Time Series Prediction (TSP&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;MVA )</subject><subject>Needles</subject><subject>Polishes</subject><subject>Prediction algorithms</subject><subject>Predictive maintenance</subject><subject>Predictive models</subject><subject>Probes</subject><subject>Remaining Useful Life (RUL)</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EElXpzsBgiTnFH4mdjFFFoVIRiJbZsl27dZXExXZA_fekKkOXd99w7nvSAeAeoynGqHpaftZTggidUlIVhPIrMBomzyhn7PpivwWTGPcIIVwQTqtiBFzdwUWXTNO4rekSnEudfDjCuk--lcn5Dq6OMZkW_rq0g299k9yPDE4mA9euNXBlgjMR1s3Wh4FoofUBznbuAD-CV67bnlKbGO_AjZVNNJP_HIOv-fN69pot318Ws3qZaZIXKbNaMqU2lS03paVE59yWFmOl9AaxwnKNCqwozVVhGZdWG6QQxYworRUxmtIxeDzfPQT_3ZuYxN73oRteClLmBHPMMBsodKZ08DEGY8UhuFaGo8BInJyKwak4ORX_TofKw7nijDEXOC4JqSj9A1vqdGA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hsieh, Yu-Ming</creator><creator>Lin, Chin-Yi</creator><creator>Wilch, Jan</creator><creator>Vogel-Heuser, Birgit</creator><creator>Lin, Yu-Chen</creator><creator>Lin, Yu-Chuan</creator><creator>Hung, Min-Hsiung</creator><creator>Cheng, Fan-Tien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3037-0104</orcidid><orcidid>https://orcid.org/0000-0003-2458-471X</orcidid><orcidid>https://orcid.org/0000-0003-0283-2495</orcidid><orcidid>https://orcid.org/0000-0003-2785-8819</orcidid><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-5308-8531</orcidid><orcidid>https://orcid.org/0000-0003-1707-8800</orcidid></search><sort><creationdate>20230901</creationdate><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><author>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Chip probing</topic><topic>Conductivity</topic><topic>Electrical resistivity</topic><topic>Indicators</topic><topic>Integrated circuits</topic><topic>Intelligent Factory Automation (iFA)</topic><topic>Manufacturing</topic><topic>Multivariate analysis</topic><topic>Multivariate Version of Time Series Prediction (TSP&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;MVA )</topic><topic>Needles</topic><topic>Polishes</topic><topic>Prediction algorithms</topic><topic>Predictive maintenance</topic><topic>Predictive models</topic><topic>Probes</topic><topic>Remaining Useful Life (RUL)</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Yu-Ming</creatorcontrib><creatorcontrib>Lin, Chin-Yi</creatorcontrib><creatorcontrib>Wilch, Jan</creatorcontrib><creatorcontrib>Vogel-Heuser, Birgit</creatorcontrib><creatorcontrib>Lin, Yu-Chen</creatorcontrib><creatorcontrib>Lin, Yu-Chuan</creatorcontrib><creatorcontrib>Hung, Min-Hsiung</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Yu-Ming</au><au>Lin, Chin-Yi</au><au>Wilch, Jan</au><au>Vogel-Heuser, Birgit</au><au>Lin, Yu-Chen</au><au>Lin, Yu-Chuan</au><au>Hung, Min-Hsiung</au><au>Cheng, Fan-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>9</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3295237</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3037-0104</orcidid><orcidid>https://orcid.org/0000-0003-2458-471X</orcidid><orcidid>https://orcid.org/0000-0003-0283-2495</orcidid><orcidid>https://orcid.org/0000-0003-2785-8819</orcidid><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-5308-8531</orcidid><orcidid>https://orcid.org/0000-0003-1707-8800</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2842171616
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation
Chip probing
Conductivity
Electrical resistivity
Indicators
Integrated circuits
Intelligent Factory Automation (iFA)
Manufacturing
Multivariate analysis
Multivariate Version of Time Series Prediction (TSP<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MVA )
Needles
Polishes
Prediction algorithms
Predictive maintenance
Predictive models
Probes
Remaining Useful Life (RUL)
Time series
Time series analysis
title An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Factory%20Automation%20System%20with%20Multivariate%20Time%20Series%20Algorithm%20for%20Chip%20Probing%20Process&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hsieh,%20Yu-Ming&rft.date=2023-09-01&rft.volume=8&rft.issue=9&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3295237&rft_dat=%3Cproquest_RIE%3E2842171616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842171616&rft_id=info:pmid/&rft_ieee_id=10182293&rfr_iscdi=true