An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process
Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Hsieh, Yu-Ming Lin, Chin-Yi Wilch, Jan Vogel-Heuser, Birgit Lin, Yu-Chen Lin, Yu-Chuan Hung, Min-Hsiung Cheng, Fan-Tien |
description | Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features. |
doi_str_mv | 10.1109/LRA.2023.3295237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2842171616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10182293</ieee_id><sourcerecordid>2842171616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EElXpzsBgiTnFH4mdjFFFoVIRiJbZsl27dZXExXZA_fekKkOXd99w7nvSAeAeoynGqHpaftZTggidUlIVhPIrMBomzyhn7PpivwWTGPcIIVwQTqtiBFzdwUWXTNO4rekSnEudfDjCuk--lcn5Dq6OMZkW_rq0g299k9yPDE4mA9euNXBlgjMR1s3Wh4FoofUBznbuAD-CV67bnlKbGO_AjZVNNJP_HIOv-fN69pot318Ws3qZaZIXKbNaMqU2lS03paVE59yWFmOl9AaxwnKNCqwozVVhGZdWG6QQxYworRUxmtIxeDzfPQT_3ZuYxN73oRteClLmBHPMMBsodKZ08DEGY8UhuFaGo8BInJyKwak4ORX_TofKw7nijDEXOC4JqSj9A1vqdGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842171616</pqid></control><display><type>article</type><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><source>IEEE Electronic Library (IEL)</source><creator>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</creator><creatorcontrib>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</creatorcontrib><description>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3295237</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automation ; Chip probing ; Conductivity ; Electrical resistivity ; Indicators ; Integrated circuits ; Intelligent Factory Automation (iFA) ; Manufacturing ; Multivariate analysis ; Multivariate Version of Time Series Prediction (TSP<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MVA ) ; Needles ; Polishes ; Prediction algorithms ; Predictive maintenance ; Predictive models ; Probes ; Remaining Useful Life (RUL) ; Time series ; Time series analysis</subject><ispartof>IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</cites><orcidid>0000-0002-3037-0104 ; 0000-0003-2458-471X ; 0000-0003-0283-2495 ; 0000-0003-2785-8819 ; 0000-0001-8201-223X ; 0000-0002-5308-8531 ; 0000-0003-1707-8800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10182293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10182293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsieh, Yu-Ming</creatorcontrib><creatorcontrib>Lin, Chin-Yi</creatorcontrib><creatorcontrib>Wilch, Jan</creatorcontrib><creatorcontrib>Vogel-Heuser, Birgit</creatorcontrib><creatorcontrib>Lin, Yu-Chen</creatorcontrib><creatorcontrib>Lin, Yu-Chuan</creatorcontrib><creatorcontrib>Hung, Min-Hsiung</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Chip probing</subject><subject>Conductivity</subject><subject>Electrical resistivity</subject><subject>Indicators</subject><subject>Integrated circuits</subject><subject>Intelligent Factory Automation (iFA)</subject><subject>Manufacturing</subject><subject>Multivariate analysis</subject><subject>Multivariate Version of Time Series Prediction (TSP<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MVA )</subject><subject>Needles</subject><subject>Polishes</subject><subject>Prediction algorithms</subject><subject>Predictive maintenance</subject><subject>Predictive models</subject><subject>Probes</subject><subject>Remaining Useful Life (RUL)</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EElXpzsBgiTnFH4mdjFFFoVIRiJbZsl27dZXExXZA_fekKkOXd99w7nvSAeAeoynGqHpaftZTggidUlIVhPIrMBomzyhn7PpivwWTGPcIIVwQTqtiBFzdwUWXTNO4rekSnEudfDjCuk--lcn5Dq6OMZkW_rq0g299k9yPDE4mA9euNXBlgjMR1s3Wh4FoofUBznbuAD-CV67bnlKbGO_AjZVNNJP_HIOv-fN69pot318Ws3qZaZIXKbNaMqU2lS03paVE59yWFmOl9AaxwnKNCqwozVVhGZdWG6QQxYworRUxmtIxeDzfPQT_3ZuYxN73oRteClLmBHPMMBsodKZ08DEGY8UhuFaGo8BInJyKwak4ORX_TofKw7nijDEXOC4JqSj9A1vqdGA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hsieh, Yu-Ming</creator><creator>Lin, Chin-Yi</creator><creator>Wilch, Jan</creator><creator>Vogel-Heuser, Birgit</creator><creator>Lin, Yu-Chen</creator><creator>Lin, Yu-Chuan</creator><creator>Hung, Min-Hsiung</creator><creator>Cheng, Fan-Tien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3037-0104</orcidid><orcidid>https://orcid.org/0000-0003-2458-471X</orcidid><orcidid>https://orcid.org/0000-0003-0283-2495</orcidid><orcidid>https://orcid.org/0000-0003-2785-8819</orcidid><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-5308-8531</orcidid><orcidid>https://orcid.org/0000-0003-1707-8800</orcidid></search><sort><creationdate>20230901</creationdate><title>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</title><author>Hsieh, Yu-Ming ; Lin, Chin-Yi ; Wilch, Jan ; Vogel-Heuser, Birgit ; Lin, Yu-Chen ; Lin, Yu-Chuan ; Hung, Min-Hsiung ; Cheng, Fan-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-fca6bbd9f8d8f32c47f8f11bbcd065f7c051b334b5f67afce0b03162bccb2ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Chip probing</topic><topic>Conductivity</topic><topic>Electrical resistivity</topic><topic>Indicators</topic><topic>Integrated circuits</topic><topic>Intelligent Factory Automation (iFA)</topic><topic>Manufacturing</topic><topic>Multivariate analysis</topic><topic>Multivariate Version of Time Series Prediction (TSP<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MVA )</topic><topic>Needles</topic><topic>Polishes</topic><topic>Prediction algorithms</topic><topic>Predictive maintenance</topic><topic>Predictive models</topic><topic>Probes</topic><topic>Remaining Useful Life (RUL)</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Yu-Ming</creatorcontrib><creatorcontrib>Lin, Chin-Yi</creatorcontrib><creatorcontrib>Wilch, Jan</creatorcontrib><creatorcontrib>Vogel-Heuser, Birgit</creatorcontrib><creatorcontrib>Lin, Yu-Chen</creatorcontrib><creatorcontrib>Lin, Yu-Chuan</creatorcontrib><creatorcontrib>Hung, Min-Hsiung</creatorcontrib><creatorcontrib>Cheng, Fan-Tien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Yu-Ming</au><au>Lin, Chin-Yi</au><au>Wilch, Jan</au><au>Vogel-Heuser, Birgit</au><au>Lin, Yu-Chen</au><au>Lin, Yu-Chuan</au><au>Hung, Min-Hsiung</au><au>Cheng, Fan-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>9</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Chip-probing is the key process for IC manufacturing to its ensure quality. As the number of tests increases, the test quality and the test yield will be affected because the needles on the probe card of the tester will be contaminated by external objects or worn out. Whether a needle polish of the probe card is required can be determined through real-time monitoring on various detection indicators such as resistivity and yield. However, both resistivity and yield are lagging indicators, and excessively frequent needle polishes will increase the processing time and reduce the test throughput. The so-called Intelligent Factory Automation (iFA) system platform, realized by integrating several intelligent services including Intelligent Predictive Maintenance (IPM), was proposed to accomplish the goal of Zero-Defect Manufacturing. However, the current remaining useful life (RUL) prediction algorithm in IPM is a univariate time series prediction. The RUL prediction may not be accurate enough if only one variable is adopted to describe the dynamic changes of the time series. A supervisory architecture for chip probing process based on iFA is proposed in this paper. The Multivariate Version of Time Series Prediction (TSPMVA) in this architecture can use the vector autoregression model to improve the accuracy of RUL prediction. Experimental results reveal that the proposed supervisory framework with TSP MVA can not only monitor the tester's heath status efficiently but also improve the accuracy of needle's RUL prediction by extracting multiple features.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3295237</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3037-0104</orcidid><orcidid>https://orcid.org/0000-0003-2458-471X</orcidid><orcidid>https://orcid.org/0000-0003-0283-2495</orcidid><orcidid>https://orcid.org/0000-0003-2785-8819</orcidid><orcidid>https://orcid.org/0000-0001-8201-223X</orcidid><orcidid>https://orcid.org/0000-0002-5308-8531</orcidid><orcidid>https://orcid.org/0000-0003-1707-8800</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2842171616 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automation Chip probing Conductivity Electrical resistivity Indicators Integrated circuits Intelligent Factory Automation (iFA) Manufacturing Multivariate analysis Multivariate Version of Time Series Prediction (TSP<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">MVA ) Needles Polishes Prediction algorithms Predictive maintenance Predictive models Probes Remaining Useful Life (RUL) Time series Time series analysis |
title | An Intelligent Factory Automation System with Multivariate Time Series Algorithm for Chip Probing Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Factory%20Automation%20System%20with%20Multivariate%20Time%20Series%20Algorithm%20for%20Chip%20Probing%20Process&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hsieh,%20Yu-Ming&rft.date=2023-09-01&rft.volume=8&rft.issue=9&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3295237&rft_dat=%3Cproquest_RIE%3E2842171616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842171616&rft_id=info:pmid/&rft_ieee_id=10182293&rfr_iscdi=true |