APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System

The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Hussain, Safdar, Ahmad, Maaz Bin, Asif, Muhammad, Akram, Waseem, Mahmood, Khalid, Das, Ashok Kumar, Shetty, Sachin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Hussain, Safdar
Ahmad, Maaz Bin
Asif, Muhammad
Akram, Waseem
Mahmood, Khalid
Das, Ashok Kumar
Shetty, Sachin
description The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.
doi_str_mv 10.1109/ACCESS.2023.3291599
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2842171603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171354</ieee_id><doaj_id>oai_doaj_org_article_fd808c29ee9e42858fa8dd7ee4dab98b</doaj_id><sourcerecordid>2842171603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQX6KGJ5-J-dLu7R1JRSTASwfNmuzsrJaXF3WLCv7dQYpjLTN6892aSF0X3GI0xRvJpkufT5XJMEKFjSiRmUl5FA4IzmVBGs-uL-TYahbBBXYkOYnwQfU4Wq3hif8EH7Utdxc_goDYQv4NZ67oM29g1Pp7Vdh_aE2HWrOJprYsKbJwfCvDJYn0IpelWy0NoYXsX3ThdBRid-zD6epmu8rdk_vE6yyfzxKRItgmzFmHuMpBccEmcYERoLi3ShjspOBOWSocLBNKaonDUcsRSlAqZCpuRgg6jWe9rG71RO19utT-oRpfqBDT-W2nflqYC5axAwhAJICElggmnhbUcILW6kOLo9dh77Xzzs4fQqk2z93X3viIiJZjjDNGORXuW8U0IHtz_VYzUMQvVZ6GOWahzFp3qoVeVAHCh6EwpS-kfMK2EkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842171603</pqid></control><display><type>article</type><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</creator><creatorcontrib>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</creatorcontrib><description>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3291599</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advanced Persistent Threat ; Algorithms ; Cyber-Physical System ; Cyber-physical systems ; Cybersecurity ; Data models ; Datasets ; Deep learning ; Defense industry ; Graph Attention Network ; graph attention networks ; Graph Neural Network ; Graph neural networks ; Industrial applications ; Industrial Internet of Things ; Internet of Things ; Machine learning ; Malware ; Real-time systems ; Security ; Sensors ; the Industrial Internet of Things ; Threat modeling</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</citedby><cites>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</cites><orcidid>0000-0001-5046-7766 ; 0000-0001-6811-0044 ; 0000-0002-5196-9589 ; 0000-0001-9269-3374 ; 0000-0002-8789-0610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hussain, Safdar</creatorcontrib><creatorcontrib>Ahmad, Maaz Bin</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Akram, Waseem</creatorcontrib><creatorcontrib>Mahmood, Khalid</creatorcontrib><creatorcontrib>Das, Ashok Kumar</creatorcontrib><creatorcontrib>Shetty, Sachin</creatorcontrib><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><title>IEEE access</title><addtitle>Access</addtitle><description>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</description><subject>Advanced Persistent Threat</subject><subject>Algorithms</subject><subject>Cyber-Physical System</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Defense industry</subject><subject>Graph Attention Network</subject><subject>graph attention networks</subject><subject>Graph Neural Network</subject><subject>Graph neural networks</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Real-time systems</subject><subject>Security</subject><subject>Sensors</subject><subject>the Industrial Internet of Things</subject><subject>Threat modeling</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQX6KGJ5-J-dLu7R1JRSTASwfNmuzsrJaXF3WLCv7dQYpjLTN6892aSF0X3GI0xRvJpkufT5XJMEKFjSiRmUl5FA4IzmVBGs-uL-TYahbBBXYkOYnwQfU4Wq3hif8EH7Utdxc_goDYQv4NZ67oM29g1Pp7Vdh_aE2HWrOJprYsKbJwfCvDJYn0IpelWy0NoYXsX3ThdBRid-zD6epmu8rdk_vE6yyfzxKRItgmzFmHuMpBccEmcYERoLi3ShjspOBOWSocLBNKaonDUcsRSlAqZCpuRgg6jWe9rG71RO19utT-oRpfqBDT-W2nflqYC5axAwhAJICElggmnhbUcILW6kOLo9dh77Xzzs4fQqk2z93X3viIiJZjjDNGORXuW8U0IHtz_VYzUMQvVZ6GOWahzFp3qoVeVAHCh6EwpS-kfMK2EkQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hussain, Safdar</creator><creator>Ahmad, Maaz Bin</creator><creator>Asif, Muhammad</creator><creator>Akram, Waseem</creator><creator>Mahmood, Khalid</creator><creator>Das, Ashok Kumar</creator><creator>Shetty, Sachin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5046-7766</orcidid><orcidid>https://orcid.org/0000-0001-6811-0044</orcidid><orcidid>https://orcid.org/0000-0002-5196-9589</orcidid><orcidid>https://orcid.org/0000-0001-9269-3374</orcidid><orcidid>https://orcid.org/0000-0002-8789-0610</orcidid></search><sort><creationdate>20230101</creationdate><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><author>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Persistent Threat</topic><topic>Algorithms</topic><topic>Cyber-Physical System</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Defense industry</topic><topic>Graph Attention Network</topic><topic>graph attention networks</topic><topic>Graph Neural Network</topic><topic>Graph neural networks</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Real-time systems</topic><topic>Security</topic><topic>Sensors</topic><topic>the Industrial Internet of Things</topic><topic>Threat modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Safdar</creatorcontrib><creatorcontrib>Ahmad, Maaz Bin</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Akram, Waseem</creatorcontrib><creatorcontrib>Mahmood, Khalid</creatorcontrib><creatorcontrib>Das, Ashok Kumar</creatorcontrib><creatorcontrib>Shetty, Sachin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Safdar</au><au>Ahmad, Maaz Bin</au><au>Asif, Muhammad</au><au>Akram, Waseem</au><au>Mahmood, Khalid</au><au>Das, Ashok Kumar</au><au>Shetty, Sachin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3291599</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5046-7766</orcidid><orcidid>https://orcid.org/0000-0001-6811-0044</orcidid><orcidid>https://orcid.org/0000-0002-5196-9589</orcidid><orcidid>https://orcid.org/0000-0001-9269-3374</orcidid><orcidid>https://orcid.org/0000-0002-8789-0610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2842171603
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Advanced Persistent Threat
Algorithms
Cyber-Physical System
Cyber-physical systems
Cybersecurity
Data models
Datasets
Deep learning
Defense industry
Graph Attention Network
graph attention networks
Graph Neural Network
Graph neural networks
Industrial applications
Industrial Internet of Things
Internet of Things
Machine learning
Malware
Real-time systems
Security
Sensors
the Industrial Internet of Things
Threat modeling
title APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APT%20Adversarial%20Defence%20Mechanism%20for%20Industrial%20IoT%20Enabled%20Cyber-Physical%20System&rft.jtitle=IEEE%20access&rft.au=Hussain,%20Safdar&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3291599&rft_dat=%3Cproquest_ieee_%3E2842171603%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842171603&rft_id=info:pmid/&rft_ieee_id=10171354&rft_doaj_id=oai_doaj_org_article_fd808c29ee9e42858fa8dd7ee4dab98b&rfr_iscdi=true