APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System
The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Hussain, Safdar Ahmad, Maaz Bin Asif, Muhammad Akram, Waseem Mahmood, Khalid Das, Ashok Kumar Shetty, Sachin |
description | The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm. |
doi_str_mv | 10.1109/ACCESS.2023.3291599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2842171603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171354</ieee_id><doaj_id>oai_doaj_org_article_fd808c29ee9e42858fa8dd7ee4dab98b</doaj_id><sourcerecordid>2842171603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQbYwmEuQX6KGJ5-J-dLu7R1JRSTASwfNmuzsrJaXF3WLCv7dQYpjLTN6892aSF0X3GI0xRvJpkufT5XJMEKFjSiRmUl5FA4IzmVBGs-uL-TYahbBBXYkOYnwQfU4Wq3hif8EH7Utdxc_goDYQv4NZ67oM29g1Pp7Vdh_aE2HWrOJprYsKbJwfCvDJYn0IpelWy0NoYXsX3ThdBRid-zD6epmu8rdk_vE6yyfzxKRItgmzFmHuMpBccEmcYERoLi3ShjspOBOWSocLBNKaonDUcsRSlAqZCpuRgg6jWe9rG71RO19utT-oRpfqBDT-W2nflqYC5axAwhAJICElggmnhbUcILW6kOLo9dh77Xzzs4fQqk2z93X3viIiJZjjDNGORXuW8U0IHtz_VYzUMQvVZ6GOWahzFp3qoVeVAHCh6EwpS-kfMK2EkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842171603</pqid></control><display><type>article</type><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</creator><creatorcontrib>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</creatorcontrib><description>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3291599</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advanced Persistent Threat ; Algorithms ; Cyber-Physical System ; Cyber-physical systems ; Cybersecurity ; Data models ; Datasets ; Deep learning ; Defense industry ; Graph Attention Network ; graph attention networks ; Graph Neural Network ; Graph neural networks ; Industrial applications ; Industrial Internet of Things ; Internet of Things ; Machine learning ; Malware ; Real-time systems ; Security ; Sensors ; the Industrial Internet of Things ; Threat modeling</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</citedby><cites>FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</cites><orcidid>0000-0001-5046-7766 ; 0000-0001-6811-0044 ; 0000-0002-5196-9589 ; 0000-0001-9269-3374 ; 0000-0002-8789-0610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hussain, Safdar</creatorcontrib><creatorcontrib>Ahmad, Maaz Bin</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Akram, Waseem</creatorcontrib><creatorcontrib>Mahmood, Khalid</creatorcontrib><creatorcontrib>Das, Ashok Kumar</creatorcontrib><creatorcontrib>Shetty, Sachin</creatorcontrib><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><title>IEEE access</title><addtitle>Access</addtitle><description>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</description><subject>Advanced Persistent Threat</subject><subject>Algorithms</subject><subject>Cyber-Physical System</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Defense industry</subject><subject>Graph Attention Network</subject><subject>graph attention networks</subject><subject>Graph Neural Network</subject><subject>Graph neural networks</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Real-time systems</subject><subject>Security</subject><subject>Sensors</subject><subject>the Industrial Internet of Things</subject><subject>Threat modeling</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQbYwmEuQX6KGJ5-J-dLu7R1JRSTASwfNmuzsrJaXF3WLCv7dQYpjLTN6892aSF0X3GI0xRvJpkufT5XJMEKFjSiRmUl5FA4IzmVBGs-uL-TYahbBBXYkOYnwQfU4Wq3hif8EH7Utdxc_goDYQv4NZ67oM29g1Pp7Vdh_aE2HWrOJprYsKbJwfCvDJYn0IpelWy0NoYXsX3ThdBRid-zD6epmu8rdk_vE6yyfzxKRItgmzFmHuMpBccEmcYERoLi3ShjspOBOWSocLBNKaonDUcsRSlAqZCpuRgg6jWe9rG71RO19utT-oRpfqBDT-W2nflqYC5axAwhAJICElggmnhbUcILW6kOLo9dh77Xzzs4fQqk2z93X3viIiJZjjDNGORXuW8U0IHtz_VYzUMQvVZ6GOWahzFp3qoVeVAHCh6EwpS-kfMK2EkQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hussain, Safdar</creator><creator>Ahmad, Maaz Bin</creator><creator>Asif, Muhammad</creator><creator>Akram, Waseem</creator><creator>Mahmood, Khalid</creator><creator>Das, Ashok Kumar</creator><creator>Shetty, Sachin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5046-7766</orcidid><orcidid>https://orcid.org/0000-0001-6811-0044</orcidid><orcidid>https://orcid.org/0000-0002-5196-9589</orcidid><orcidid>https://orcid.org/0000-0001-9269-3374</orcidid><orcidid>https://orcid.org/0000-0002-8789-0610</orcidid></search><sort><creationdate>20230101</creationdate><title>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</title><author>Hussain, Safdar ; Ahmad, Maaz Bin ; Asif, Muhammad ; Akram, Waseem ; Mahmood, Khalid ; Das, Ashok Kumar ; Shetty, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-5dd017f6e978792f8528a79d0ac7f98758d39f1b0e9dcbbf3d7054048948d62b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Persistent Threat</topic><topic>Algorithms</topic><topic>Cyber-Physical System</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Defense industry</topic><topic>Graph Attention Network</topic><topic>graph attention networks</topic><topic>Graph Neural Network</topic><topic>Graph neural networks</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Real-time systems</topic><topic>Security</topic><topic>Sensors</topic><topic>the Industrial Internet of Things</topic><topic>Threat modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Safdar</creatorcontrib><creatorcontrib>Ahmad, Maaz Bin</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Akram, Waseem</creatorcontrib><creatorcontrib>Mahmood, Khalid</creatorcontrib><creatorcontrib>Das, Ashok Kumar</creatorcontrib><creatorcontrib>Shetty, Sachin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Safdar</au><au>Ahmad, Maaz Bin</au><au>Asif, Muhammad</au><au>Akram, Waseem</au><au>Mahmood, Khalid</au><au>Das, Ashok Kumar</au><au>Shetty, Sachin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge IIoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3291599</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5046-7766</orcidid><orcidid>https://orcid.org/0000-0001-6811-0044</orcidid><orcidid>https://orcid.org/0000-0002-5196-9589</orcidid><orcidid>https://orcid.org/0000-0001-9269-3374</orcidid><orcidid>https://orcid.org/0000-0002-8789-0610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2842171603 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Advanced Persistent Threat Algorithms Cyber-Physical System Cyber-physical systems Cybersecurity Data models Datasets Deep learning Defense industry Graph Attention Network graph attention networks Graph Neural Network Graph neural networks Industrial applications Industrial Internet of Things Internet of Things Machine learning Malware Real-time systems Security Sensors the Industrial Internet of Things Threat modeling |
title | APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APT%20Adversarial%20Defence%20Mechanism%20for%20Industrial%20IoT%20Enabled%20Cyber-Physical%20System&rft.jtitle=IEEE%20access&rft.au=Hussain,%20Safdar&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3291599&rft_dat=%3Cproquest_ieee_%3E2842171603%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842171603&rft_id=info:pmid/&rft_ieee_id=10171354&rft_doaj_id=oai_doaj_org_article_fd808c29ee9e42858fa8dd7ee4dab98b&rfr_iscdi=true |