Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR

Electrocution accidents caused by operation and maintenance personnel and high-voltage live equipment frequently occur in substations. Although many cameras have been installed for the surveillance of critical energized equipment, they cannot complete the monitoring of safe distance. In addition, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2023-08, Vol.38 (4), p.1-12
Hauptverfasser: Li, Jinheng, Shuang, Feng, Huang, Junjie, Wang, Tao, Hu, Sijia, Hu, Junhao, Zheng, Hanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 4
container_start_page 1
container_title IEEE transactions on power delivery
container_volume 38
creator Li, Jinheng
Shuang, Feng
Huang, Junjie
Wang, Tao
Hu, Sijia
Hu, Junhao
Zheng, Hanbo
description Electrocution accidents caused by operation and maintenance personnel and high-voltage live equipment frequently occur in substations. Although many cameras have been installed for the surveillance of critical energized equipment, they cannot complete the monitoring of safe distance. In addition, the current research based on vision or LiDAR suffers from computationally intensive, lack of real-time or expensive equipment. In order to meet the low cost, easy maintenance and real-time requirements of substation safe distance monitoring, a monocular vision method based on 2D-3D fusion is proposed in this study. Specifically, instance segmentation, depth estimation, depth reconstruction, and back projection transformation are used to predict the 3D distance of objects in 2D images. The work is mainly implemented in two aspects: a) To obtain the high-quality masks of Power Transformers and Person, SOLOv2 is optimized on three aspects: feature extraction, feature fusion and ability to cope with object geometric transformation. b) Pseudo-LiDAR output from RGB images via depth estimation and back projection techniques. Subsequently, combined with the point cloud of the object and the actual-to-virtual conversion ratio, the actual distance between Power Transformer and Person can be calculated. Experimental results show that the maximum error of ranging is within 9%, with an average error rate of 5.34% on the Power Transformer-Person dataset. It can be seen that the proposed method has achieved good ranging effects, and can realize the automatic measurement of the safe distance of Power Transformer.
doi_str_mv 10.1109/TPWRD.2023.3265415
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2842168413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10097597</ieee_id><sourcerecordid>2842168413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-9147895bb9ff02ac56cb8f25b15c5ca633827c0cc8b2acea46bca857e5b1a5b93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt_QDwEPG_Nx2aTHEv9hIJSK16EkGRnS0q72W52Bf-9W9uDp4F532cGHoSuKZlQSvTd8u1zcT9hhPEJZ4XIqThBI6q5zHJG1CkaEaVEprSU5-gipTUhJCeajNDXu60AlyF1tvaAt7EOXWxDvcKxwpvwDRh2fWi2UHfY2QQl7ptY41AfgQSrfWa7MGxtXeImQV_GbB7up4tLdFbZTYKr4xyjj8eH5ew5m78-vcym88wzXXSZprlUWjinq4ow60XhnaqYcFR44W3BuWLSE--VG1KweeG8VULC0LDCaT5Gt4e7TRt3PaTOrGPf1sNLw1TOaKFyyocWO7R8G1NqoTJNG7a2_TGUmL1F82fR7C2ao8UBujlAAQD-AURLoSX_BUFwb8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168413</pqid></control><display><type>article</type><title>Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jinheng ; Shuang, Feng ; Huang, Junjie ; Wang, Tao ; Hu, Sijia ; Hu, Junhao ; Zheng, Hanbo</creator><creatorcontrib>Li, Jinheng ; Shuang, Feng ; Huang, Junjie ; Wang, Tao ; Hu, Sijia ; Hu, Junhao ; Zheng, Hanbo</creatorcontrib><description>Electrocution accidents caused by operation and maintenance personnel and high-voltage live equipment frequently occur in substations. Although many cameras have been installed for the surveillance of critical energized equipment, they cannot complete the monitoring of safe distance. In addition, the current research based on vision or LiDAR suffers from computationally intensive, lack of real-time or expensive equipment. In order to meet the low cost, easy maintenance and real-time requirements of substation safe distance monitoring, a monocular vision method based on 2D-3D fusion is proposed in this study. Specifically, instance segmentation, depth estimation, depth reconstruction, and back projection transformation are used to predict the 3D distance of objects in 2D images. The work is mainly implemented in two aspects: a) To obtain the high-quality masks of Power Transformers and Person, SOLOv2 is optimized on three aspects: feature extraction, feature fusion and ability to cope with object geometric transformation. b) Pseudo-LiDAR output from RGB images via depth estimation and back projection techniques. Subsequently, combined with the point cloud of the object and the actual-to-virtual conversion ratio, the actual distance between Power Transformer and Person can be calculated. Experimental results show that the maximum error of ranging is within 9%, with an average error rate of 5.34% on the Power Transformer-Person dataset. It can be seen that the proposed method has achieved good ranging effects, and can realize the automatic measurement of the safe distance of Power Transformer.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2023.3265415</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; Color imagery ; Conversion ratio ; Depth estimation ; Electrocutions ; Feature extraction ; Geometric transformation ; Image reconstruction ; Image segmentation ; Instance segmentation ; Laser radar ; Lidar ; Maintenance ; Monitoring ; Monocular vision ; object segmentation ; Personnel ; Power transformers ; pseudo-LiDAR ; Real time ; Safety ; substation safety ; Substations ; Three-dimensional displays ; Transformers</subject><ispartof>IEEE transactions on power delivery, 2023-08, Vol.38 (4), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-9147895bb9ff02ac56cb8f25b15c5ca633827c0cc8b2acea46bca857e5b1a5b93</citedby><cites>FETCH-LOGICAL-c296t-9147895bb9ff02ac56cb8f25b15c5ca633827c0cc8b2acea46bca857e5b1a5b93</cites><orcidid>0000-0002-0748-1666 ; 0000-0002-4733-4732 ; 0000-0002-7660-7293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10097597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10097597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jinheng</creatorcontrib><creatorcontrib>Shuang, Feng</creatorcontrib><creatorcontrib>Huang, Junjie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Hu, Junhao</creatorcontrib><creatorcontrib>Zheng, Hanbo</creatorcontrib><title>Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Electrocution accidents caused by operation and maintenance personnel and high-voltage live equipment frequently occur in substations. Although many cameras have been installed for the surveillance of critical energized equipment, they cannot complete the monitoring of safe distance. In addition, the current research based on vision or LiDAR suffers from computationally intensive, lack of real-time or expensive equipment. In order to meet the low cost, easy maintenance and real-time requirements of substation safe distance monitoring, a monocular vision method based on 2D-3D fusion is proposed in this study. Specifically, instance segmentation, depth estimation, depth reconstruction, and back projection transformation are used to predict the 3D distance of objects in 2D images. The work is mainly implemented in two aspects: a) To obtain the high-quality masks of Power Transformers and Person, SOLOv2 is optimized on three aspects: feature extraction, feature fusion and ability to cope with object geometric transformation. b) Pseudo-LiDAR output from RGB images via depth estimation and back projection techniques. Subsequently, combined with the point cloud of the object and the actual-to-virtual conversion ratio, the actual distance between Power Transformer and Person can be calculated. Experimental results show that the maximum error of ranging is within 9%, with an average error rate of 5.34% on the Power Transformer-Person dataset. It can be seen that the proposed method has achieved good ranging effects, and can realize the automatic measurement of the safe distance of Power Transformer.</description><subject>Cloud computing</subject><subject>Color imagery</subject><subject>Conversion ratio</subject><subject>Depth estimation</subject><subject>Electrocutions</subject><subject>Feature extraction</subject><subject>Geometric transformation</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Maintenance</subject><subject>Monitoring</subject><subject>Monocular vision</subject><subject>object segmentation</subject><subject>Personnel</subject><subject>Power transformers</subject><subject>pseudo-LiDAR</subject><subject>Real time</subject><subject>Safety</subject><subject>substation safety</subject><subject>Substations</subject><subject>Three-dimensional displays</subject><subject>Transformers</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt_QDwEPG_Nx2aTHEv9hIJSK16EkGRnS0q72W52Bf-9W9uDp4F532cGHoSuKZlQSvTd8u1zcT9hhPEJZ4XIqThBI6q5zHJG1CkaEaVEprSU5-gipTUhJCeajNDXu60AlyF1tvaAt7EOXWxDvcKxwpvwDRh2fWi2UHfY2QQl7ptY41AfgQSrfWa7MGxtXeImQV_GbB7up4tLdFbZTYKr4xyjj8eH5ew5m78-vcym88wzXXSZprlUWjinq4ow60XhnaqYcFR44W3BuWLSE--VG1KweeG8VULC0LDCaT5Gt4e7TRt3PaTOrGPf1sNLw1TOaKFyyocWO7R8G1NqoTJNG7a2_TGUmL1F82fR7C2ao8UBujlAAQD-AURLoSX_BUFwb8U</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Jinheng</creator><creator>Shuang, Feng</creator><creator>Huang, Junjie</creator><creator>Wang, Tao</creator><creator>Hu, Sijia</creator><creator>Hu, Junhao</creator><creator>Zheng, Hanbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0748-1666</orcidid><orcidid>https://orcid.org/0000-0002-4733-4732</orcidid><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid></search><sort><creationdate>20230801</creationdate><title>Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR</title><author>Li, Jinheng ; Shuang, Feng ; Huang, Junjie ; Wang, Tao ; Hu, Sijia ; Hu, Junhao ; Zheng, Hanbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-9147895bb9ff02ac56cb8f25b15c5ca633827c0cc8b2acea46bca857e5b1a5b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Color imagery</topic><topic>Conversion ratio</topic><topic>Depth estimation</topic><topic>Electrocutions</topic><topic>Feature extraction</topic><topic>Geometric transformation</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Maintenance</topic><topic>Monitoring</topic><topic>Monocular vision</topic><topic>object segmentation</topic><topic>Personnel</topic><topic>Power transformers</topic><topic>pseudo-LiDAR</topic><topic>Real time</topic><topic>Safety</topic><topic>substation safety</topic><topic>Substations</topic><topic>Three-dimensional displays</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinheng</creatorcontrib><creatorcontrib>Shuang, Feng</creatorcontrib><creatorcontrib>Huang, Junjie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Hu, Junhao</creatorcontrib><creatorcontrib>Zheng, Hanbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jinheng</au><au>Shuang, Feng</au><au>Huang, Junjie</au><au>Wang, Tao</au><au>Hu, Sijia</au><au>Hu, Junhao</au><au>Zheng, Hanbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>4</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Electrocution accidents caused by operation and maintenance personnel and high-voltage live equipment frequently occur in substations. Although many cameras have been installed for the surveillance of critical energized equipment, they cannot complete the monitoring of safe distance. In addition, the current research based on vision or LiDAR suffers from computationally intensive, lack of real-time or expensive equipment. In order to meet the low cost, easy maintenance and real-time requirements of substation safe distance monitoring, a monocular vision method based on 2D-3D fusion is proposed in this study. Specifically, instance segmentation, depth estimation, depth reconstruction, and back projection transformation are used to predict the 3D distance of objects in 2D images. The work is mainly implemented in two aspects: a) To obtain the high-quality masks of Power Transformers and Person, SOLOv2 is optimized on three aspects: feature extraction, feature fusion and ability to cope with object geometric transformation. b) Pseudo-LiDAR output from RGB images via depth estimation and back projection techniques. Subsequently, combined with the point cloud of the object and the actual-to-virtual conversion ratio, the actual distance between Power Transformer and Person can be calculated. Experimental results show that the maximum error of ranging is within 9%, with an average error rate of 5.34% on the Power Transformer-Person dataset. It can be seen that the proposed method has achieved good ranging effects, and can realize the automatic measurement of the safe distance of Power Transformer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2023.3265415</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0748-1666</orcidid><orcidid>https://orcid.org/0000-0002-4733-4732</orcidid><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2023-08, Vol.38 (4), p.1-12
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_2842168413
source IEEE Electronic Library (IEL)
subjects Cloud computing
Color imagery
Conversion ratio
Depth estimation
Electrocutions
Feature extraction
Geometric transformation
Image reconstruction
Image segmentation
Instance segmentation
Laser radar
Lidar
Maintenance
Monitoring
Monocular vision
object segmentation
Personnel
Power transformers
pseudo-LiDAR
Real time
Safety
substation safety
Substations
Three-dimensional displays
Transformers
title Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20distance%20monitoring%20of%20live%20equipment%20based%20upon%20instance%20segmentation%20and%20pseudo-LiDAR&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Li,%20Jinheng&rft.date=2023-08-01&rft.volume=38&rft.issue=4&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2023.3265415&rft_dat=%3Cproquest_RIE%3E2842168413%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842168413&rft_id=info:pmid/&rft_ieee_id=10097597&rfr_iscdi=true