Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths

We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games. Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%. In this work, we show how we construct the data set to train Machine Learning models on pas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Felice, Florian, Ley, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Felice, Florian
Ley, Christophe
description We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games. Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%. In this work, we show how we construct the data set to train Machine Learning models on past female club matches. We then compare different models and evaluate them to assess their performance capabilities. Finally, explainability methods allow us to change the scope of our tool from a purely predictive solution to a highly insightful analytical tool. This can become a valuable asset for handball teams' coaches providing valuable statistical and predictive insights to prepare future competitions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2841698516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841698516</sourcerecordid><originalsourceid>FETCH-proquest_journals_28416985163</originalsourceid><addsrcrecordid>eNqNy80KgkAUBeAhCJLyHS60FnT8ydZhuCgIcm83HXVEx5q5Fr19s-gBWh043zkL5vAwDLw04nzFXGN63_d5suNxHDrsdtGilhXJScHUQI6qvuMwwBmp6oSBt6QOroQkDcnKygcy1aGqRA0ngVpJ1cJLImTWRyRbFwJHe9FCtdSZDVs2OBjh_nLNtsesOOTeQ0_PWRgq-2nWylLJ0yhI9mkcJOF_qy_xB0T_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841698516</pqid></control><display><type>article</type><title>Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths</title><source>Free E- Journals</source><creator>Felice, Florian ; Ley, Christophe</creator><creatorcontrib>Felice, Florian ; Ley, Christophe</creatorcontrib><description>We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games. Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%. In this work, we show how we construct the data set to train Machine Learning models on past female club matches. We then compare different models and evaluate them to assess their performance capabilities. Finally, explainability methods allow us to change the scope of our tool from a purely predictive solution to a highly insightful analytical tool. This can become a valuable asset for handball teams' coaches providing valuable statistical and predictive insights to prepare future competitions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Machine learning</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Felice, Florian</creatorcontrib><creatorcontrib>Ley, Christophe</creatorcontrib><title>Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths</title><title>arXiv.org</title><description>We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games. Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%. In this work, we show how we construct the data set to train Machine Learning models on past female club matches. We then compare different models and evaluate them to assess their performance capabilities. Finally, explainability methods allow us to change the scope of our tool from a purely predictive solution to a highly insightful analytical tool. This can become a valuable asset for handball teams' coaches providing valuable statistical and predictive insights to prepare future competitions.</description><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy80KgkAUBeAhCJLyHS60FnT8ydZhuCgIcm83HXVEx5q5Fr19s-gBWh043zkL5vAwDLw04nzFXGN63_d5suNxHDrsdtGilhXJScHUQI6qvuMwwBmp6oSBt6QOroQkDcnKygcy1aGqRA0ngVpJ1cJLImTWRyRbFwJHe9FCtdSZDVs2OBjh_nLNtsesOOTeQ0_PWRgq-2nWylLJ0yhI9mkcJOF_qy_xB0T_</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Felice, Florian</creator><creator>Ley, Christophe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230720</creationdate><title>Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths</title><author>Felice, Florian ; Ley, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28416985163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Felice, Florian</creatorcontrib><creatorcontrib>Ley, Christophe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felice, Florian</au><au>Ley, Christophe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths</atitle><jtitle>arXiv.org</jtitle><date>2023-07-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a Statistically Enhanced Learning (aka. SEL) model to predict handball games. Our Machine Learning model augmented with SEL features outperforms state-of-the-art models with an accuracy beyond 80%. In this work, we show how we construct the data set to train Machine Learning models on past female club matches. We then compare different models and evaluate them to assess their performance capabilities. Finally, explainability methods allow us to change the scope of our tool from a purely predictive solution to a highly insightful analytical tool. This can become a valuable asset for handball teams' coaches providing valuable statistical and predictive insights to prepare future competitions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2841698516
source Free E- Journals
subjects Machine learning
title Prediction of Handball Matches with Statistically Enhanced Learning via Estimated Team Strengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Prediction%20of%20Handball%20Matches%20with%20Statistically%20Enhanced%20Learning%20via%20Estimated%20Team%20Strengths&rft.jtitle=arXiv.org&rft.au=Felice,%20Florian&rft.date=2023-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2841698516%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841698516&rft_id=info:pmid/&rfr_iscdi=true