Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella
Herbicides enter the ocean through surface runoff and have become a serious pollution threat in the coastal areas. As photosynthetic inhibitors, triazine herbicides are more harmful to marine photosynthetic organisms, especially phytoplankton, than to marine animals. Herbicide pollution may also cau...
Gespeichert in:
Veröffentlicht in: | Journal of applied phycology 2023-08, Vol.35 (4), p.1663-1671 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1671 |
---|---|
container_issue | 4 |
container_start_page | 1663 |
container_title | Journal of applied phycology |
container_volume | 35 |
creator | Xing, Qikun Kim, Young Woo Park, Ji-Sook Han, Young-Seok Yarish, Charles Yoo, Hyun Il Kim, Jang K. |
description | Herbicides enter the ocean through surface runoff and have become a serious pollution threat in the coastal areas. As photosynthetic inhibitors, triazine herbicides are more harmful to marine photosynthetic organisms, especially phytoplankton, than to marine animals. Herbicide pollution may also cause other environmental issues such as algal blooms by altering the structure of phytoplankton community and toxin production in bloom-forming species. To explore whether triazine herbicides will cause similar effects, we analyzed the effects of a common triazine herbicide pollutant, terbutryn, on the physiological responses and gene expression of
Alexandrium catenella
, a harmful algal bloom forming dinoflagellate. Our results show that
A. catenella
maintained a normal growth rate when exposed to terbutryn at the concentrations of 0.1 and 1 μg L
−1
. Treatment with terbutryn at 10 μg L
−1
significantly reduced the growth rate by inhibiting photosynthesis in
A. catenella
, which may also affect the repair of photosystem II by repressing the expression of the D1 protein gene. Exposure to terbutryn at 1 μg L
−1
also impacted the photosystem II, but no changes were observed on the maximum relative electron transport rate of photosynthesis. Additionally, expression of genes involved in saxitoxin was also analyzed in this study, which were not affected by the terbutryn treatment. Our study provides critical information about the potential threat of a herbicide in affecting a harmful algal bloom species. |
doi_str_mv | 10.1007/s10811-023-02991-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841688027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841688027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9edb7cbeba64fe50c3f772425a59446604d1bcd727fc7eff22b8531d0184a1e53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9VMmjbpUcQvELzoOaTpZDdLN6lJF1x_vdEVvHkYZph53nfgJeQC2BUwJq8zMAVQMV6X6jqoxAFZQCPrqgHZHpIF6zhUqpNwTE5yXjPGOgVqQeKdc2jnTKOjc_Lm0wekK0y9t35AOpdpO6ddoDHQabXLPo5x6a0ZacI8xZAxUxMGusSiw4-pbAsTqA_0ZsSPckp-u6HWzAUYR3NGjpwZM57_9lPydn_3evtYPb88PN3ePFe2hm6uOhx6aXvsTSscNszWTkoueGOaToi2ZWKA3g6SS2clOsd5r5oaBgZKGMCmPiWXe98pxfct5lmv4zaF8lJzJaBVinFZKL6nbIo5J3R6Sn5j0k4D09_B6n2wugSrf4LVoojqvSgXOCwx_Vn_o_oCyn197w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841688027</pqid></control><display><type>article</type><title>Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xing, Qikun ; Kim, Young Woo ; Park, Ji-Sook ; Han, Young-Seok ; Yarish, Charles ; Yoo, Hyun Il ; Kim, Jang K.</creator><creatorcontrib>Xing, Qikun ; Kim, Young Woo ; Park, Ji-Sook ; Han, Young-Seok ; Yarish, Charles ; Yoo, Hyun Il ; Kim, Jang K.</creatorcontrib><description>Herbicides enter the ocean through surface runoff and have become a serious pollution threat in the coastal areas. As photosynthetic inhibitors, triazine herbicides are more harmful to marine photosynthetic organisms, especially phytoplankton, than to marine animals. Herbicide pollution may also cause other environmental issues such as algal blooms by altering the structure of phytoplankton community and toxin production in bloom-forming species. To explore whether triazine herbicides will cause similar effects, we analyzed the effects of a common triazine herbicide pollutant, terbutryn, on the physiological responses and gene expression of
Alexandrium catenella
, a harmful algal bloom forming dinoflagellate. Our results show that
A. catenella
maintained a normal growth rate when exposed to terbutryn at the concentrations of 0.1 and 1 μg L
−1
. Treatment with terbutryn at 10 μg L
−1
significantly reduced the growth rate by inhibiting photosynthesis in
A. catenella
, which may also affect the repair of photosystem II by repressing the expression of the D1 protein gene. Exposure to terbutryn at 1 μg L
−1
also impacted the photosystem II, but no changes were observed on the maximum relative electron transport rate of photosynthesis. Additionally, expression of genes involved in saxitoxin was also analyzed in this study, which were not affected by the terbutryn treatment. Our study provides critical information about the potential threat of a herbicide in affecting a harmful algal bloom species.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-023-02991-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alexandrium catenella ; Algae ; Algal blooms ; Biomedical and Life Sciences ; Blooms (microorganisms) ; Coastal zone ; D1 protein ; Dinoflagellates ; Ecology ; Electron transport ; Eutrophication ; Freshwater & Marine Ecology ; Gene expression ; Growth rate ; Herbicides ; Life Sciences ; Marine animals ; Marine organisms ; Marine pollution ; Photosynthesis ; Photosystem II ; Physiological effects ; Physiological responses ; Physiology ; Phytoplankton ; Plant Physiology ; Plant Sciences ; Pollution ; Runoff ; Saxitoxin ; Surface runoff ; Terbutryn ; Toxins ; Transport rate ; Triazine</subject><ispartof>Journal of applied phycology, 2023-08, Vol.35 (4), p.1663-1671</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9edb7cbeba64fe50c3f772425a59446604d1bcd727fc7eff22b8531d0184a1e53</citedby><cites>FETCH-LOGICAL-c319t-9edb7cbeba64fe50c3f772425a59446604d1bcd727fc7eff22b8531d0184a1e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10811-023-02991-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10811-023-02991-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xing, Qikun</creatorcontrib><creatorcontrib>Kim, Young Woo</creatorcontrib><creatorcontrib>Park, Ji-Sook</creatorcontrib><creatorcontrib>Han, Young-Seok</creatorcontrib><creatorcontrib>Yarish, Charles</creatorcontrib><creatorcontrib>Yoo, Hyun Il</creatorcontrib><creatorcontrib>Kim, Jang K.</creatorcontrib><title>Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><description>Herbicides enter the ocean through surface runoff and have become a serious pollution threat in the coastal areas. As photosynthetic inhibitors, triazine herbicides are more harmful to marine photosynthetic organisms, especially phytoplankton, than to marine animals. Herbicide pollution may also cause other environmental issues such as algal blooms by altering the structure of phytoplankton community and toxin production in bloom-forming species. To explore whether triazine herbicides will cause similar effects, we analyzed the effects of a common triazine herbicide pollutant, terbutryn, on the physiological responses and gene expression of
Alexandrium catenella
, a harmful algal bloom forming dinoflagellate. Our results show that
A. catenella
maintained a normal growth rate when exposed to terbutryn at the concentrations of 0.1 and 1 μg L
−1
. Treatment with terbutryn at 10 μg L
−1
significantly reduced the growth rate by inhibiting photosynthesis in
A. catenella
, which may also affect the repair of photosystem II by repressing the expression of the D1 protein gene. Exposure to terbutryn at 1 μg L
−1
also impacted the photosystem II, but no changes were observed on the maximum relative electron transport rate of photosynthesis. Additionally, expression of genes involved in saxitoxin was also analyzed in this study, which were not affected by the terbutryn treatment. Our study provides critical information about the potential threat of a herbicide in affecting a harmful algal bloom species.</description><subject>Alexandrium catenella</subject><subject>Algae</subject><subject>Algal blooms</subject><subject>Biomedical and Life Sciences</subject><subject>Blooms (microorganisms)</subject><subject>Coastal zone</subject><subject>D1 protein</subject><subject>Dinoflagellates</subject><subject>Ecology</subject><subject>Electron transport</subject><subject>Eutrophication</subject><subject>Freshwater & Marine Ecology</subject><subject>Gene expression</subject><subject>Growth rate</subject><subject>Herbicides</subject><subject>Life Sciences</subject><subject>Marine animals</subject><subject>Marine organisms</subject><subject>Marine pollution</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Phytoplankton</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollution</subject><subject>Runoff</subject><subject>Saxitoxin</subject><subject>Surface runoff</subject><subject>Terbutryn</subject><subject>Toxins</subject><subject>Transport rate</subject><subject>Triazine</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9VMmjbpUcQvELzoOaTpZDdLN6lJF1x_vdEVvHkYZph53nfgJeQC2BUwJq8zMAVQMV6X6jqoxAFZQCPrqgHZHpIF6zhUqpNwTE5yXjPGOgVqQeKdc2jnTKOjc_Lm0wekK0y9t35AOpdpO6ddoDHQabXLPo5x6a0ZacI8xZAxUxMGusSiw4-pbAsTqA_0ZsSPckp-u6HWzAUYR3NGjpwZM57_9lPydn_3evtYPb88PN3ePFe2hm6uOhx6aXvsTSscNszWTkoueGOaToi2ZWKA3g6SS2clOsd5r5oaBgZKGMCmPiWXe98pxfct5lmv4zaF8lJzJaBVinFZKL6nbIo5J3R6Sn5j0k4D09_B6n2wugSrf4LVoojqvSgXOCwx_Vn_o_oCyn197w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xing, Qikun</creator><creator>Kim, Young Woo</creator><creator>Park, Ji-Sook</creator><creator>Han, Young-Seok</creator><creator>Yarish, Charles</creator><creator>Yoo, Hyun Il</creator><creator>Kim, Jang K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230801</creationdate><title>Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella</title><author>Xing, Qikun ; Kim, Young Woo ; Park, Ji-Sook ; Han, Young-Seok ; Yarish, Charles ; Yoo, Hyun Il ; Kim, Jang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9edb7cbeba64fe50c3f772425a59446604d1bcd727fc7eff22b8531d0184a1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alexandrium catenella</topic><topic>Algae</topic><topic>Algal blooms</topic><topic>Biomedical and Life Sciences</topic><topic>Blooms (microorganisms)</topic><topic>Coastal zone</topic><topic>D1 protein</topic><topic>Dinoflagellates</topic><topic>Ecology</topic><topic>Electron transport</topic><topic>Eutrophication</topic><topic>Freshwater & Marine Ecology</topic><topic>Gene expression</topic><topic>Growth rate</topic><topic>Herbicides</topic><topic>Life Sciences</topic><topic>Marine animals</topic><topic>Marine organisms</topic><topic>Marine pollution</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Phytoplankton</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollution</topic><topic>Runoff</topic><topic>Saxitoxin</topic><topic>Surface runoff</topic><topic>Terbutryn</topic><topic>Toxins</topic><topic>Transport rate</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Qikun</creatorcontrib><creatorcontrib>Kim, Young Woo</creatorcontrib><creatorcontrib>Park, Ji-Sook</creatorcontrib><creatorcontrib>Han, Young-Seok</creatorcontrib><creatorcontrib>Yarish, Charles</creatorcontrib><creatorcontrib>Yoo, Hyun Il</creatorcontrib><creatorcontrib>Kim, Jang K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Qikun</au><au>Kim, Young Woo</au><au>Park, Ji-Sook</au><au>Han, Young-Seok</au><au>Yarish, Charles</au><au>Yoo, Hyun Il</au><au>Kim, Jang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1663</spage><epage>1671</epage><pages>1663-1671</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>Herbicides enter the ocean through surface runoff and have become a serious pollution threat in the coastal areas. As photosynthetic inhibitors, triazine herbicides are more harmful to marine photosynthetic organisms, especially phytoplankton, than to marine animals. Herbicide pollution may also cause other environmental issues such as algal blooms by altering the structure of phytoplankton community and toxin production in bloom-forming species. To explore whether triazine herbicides will cause similar effects, we analyzed the effects of a common triazine herbicide pollutant, terbutryn, on the physiological responses and gene expression of
Alexandrium catenella
, a harmful algal bloom forming dinoflagellate. Our results show that
A. catenella
maintained a normal growth rate when exposed to terbutryn at the concentrations of 0.1 and 1 μg L
−1
. Treatment with terbutryn at 10 μg L
−1
significantly reduced the growth rate by inhibiting photosynthesis in
A. catenella
, which may also affect the repair of photosystem II by repressing the expression of the D1 protein gene. Exposure to terbutryn at 1 μg L
−1
also impacted the photosystem II, but no changes were observed on the maximum relative electron transport rate of photosynthesis. Additionally, expression of genes involved in saxitoxin was also analyzed in this study, which were not affected by the terbutryn treatment. Our study provides critical information about the potential threat of a herbicide in affecting a harmful algal bloom species.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10811-023-02991-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-8971 |
ispartof | Journal of applied phycology, 2023-08, Vol.35 (4), p.1663-1671 |
issn | 0921-8971 1573-5176 |
language | eng |
recordid | cdi_proquest_journals_2841688027 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alexandrium catenella Algae Algal blooms Biomedical and Life Sciences Blooms (microorganisms) Coastal zone D1 protein Dinoflagellates Ecology Electron transport Eutrophication Freshwater & Marine Ecology Gene expression Growth rate Herbicides Life Sciences Marine animals Marine organisms Marine pollution Photosynthesis Photosystem II Physiological effects Physiological responses Physiology Phytoplankton Plant Physiology Plant Sciences Pollution Runoff Saxitoxin Surface runoff Terbutryn Toxins Transport rate Triazine |
title | Effects of triazine herbicide terbutryn on physiological responses and gene expression in Alexandrium catenella |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20triazine%20herbicide%20terbutryn%20on%20physiological%20responses%20and%20gene%20expression%20in%20Alexandrium%20catenella&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Xing,%20Qikun&rft.date=2023-08-01&rft.volume=35&rft.issue=4&rft.spage=1663&rft.epage=1671&rft.pages=1663-1671&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-023-02991-4&rft_dat=%3Cproquest_cross%3E2841688027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841688027&rft_id=info:pmid/&rfr_iscdi=true |