A review on the applications of micro-/mini-channels for battery thermal management

This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2023-08, Vol.148 (16), p.7959-7979
Hauptverfasser: Sarvar-Ardeh, Sajjad, Rashidi, Saman, Rafee, Roohollah, Karimi, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7979
container_issue 16
container_start_page 7959
container_title Journal of thermal analysis and calorimetry
container_volume 148
creator Sarvar-Ardeh, Sajjad
Rashidi, Saman
Rafee, Roohollah
Karimi, Nader
description This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, different types of lithium-ion batteries and their advantages and disadvantages are introduced, and the components of batteries are described in detail. The studies conducted on the performance of micro-/mini-channels for cooling all types of rectangular and cylindrical batteries are reviewed, and the key finding of these studies is presented. It is shown that, in general, using counterflow configuration creates a rather uniform temperature distribution in the battery cell and keeps the maximum temperature difference below 5 ∘ C . The lowest battery maximum temperature is obtained for parallel and counterflow configurations in the straight and U-turn channels, respectively. In a parallel configuration, the peak point of the battery temperature is in the outlet area. However, in the counter-flow configuration, it occurs in the central region of the battery module. The survey of the literature further reveals that proper channel paths and flow configurations keep the battery maximum temperature within the safe range of 25 ∘ C < T max < 40 ∘ C . For such flow configurations, the pressure drop remains minimally affected.
doi_str_mv 10.1007/s10973-023-12092-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2841450073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758382717</galeid><sourcerecordid>A758382717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8c7e5b0c6aaeb86d2f6e8ff0c1358169cb89d5a6ffd8a56cb0cc87520929ca8e3</originalsourceid><addsrcrecordid>eNp9kU1rXCEUhi-hhaRJ_0BXQlddmPgRvbocQpsGAoEmXcsZ5zgx3KtTddrk39fpLZRsigsP8jzqOe8wfODsnDM2XlTO7CgpE5Jywayg-mg44coYKqzQb3ote625YsfDu1qfGGPWMn4y3K9IwZ8Rf5GcSHtEArvdFD20mFMlOZA5-pLpxRxTpP4RUsKpkpALWUNrWF4OUplhIjMk2OKMqZ0NbwNMFd__3U-H718-P1x9pbd31zdXq1vqpRWNGj-iWjOvAXBt9EYEjSYE5rlUhmvr18ZuFOgQNgaU9h31ZlSH9qwHg_J0-Ljcuyv5xx5rc095X1J_0glzyS9Vn4zs1PlCbWFCF1PIrYDva4O9t5wwxH6-GpWRRox87MKnV0JnGj63LexrdTf3316zYmH7kGotGNyuxBnKi-PMHZJxSzKuJ-P-JON0l-Qi1Q6nLZZ___6P9Rt50ZCO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841450073</pqid></control><display><type>article</type><title>A review on the applications of micro-/mini-channels for battery thermal management</title><source>SpringerLink Journals</source><creator>Sarvar-Ardeh, Sajjad ; Rashidi, Saman ; Rafee, Roohollah ; Karimi, Nader</creator><creatorcontrib>Sarvar-Ardeh, Sajjad ; Rashidi, Saman ; Rafee, Roohollah ; Karimi, Nader</creatorcontrib><description>This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, different types of lithium-ion batteries and their advantages and disadvantages are introduced, and the components of batteries are described in detail. The studies conducted on the performance of micro-/mini-channels for cooling all types of rectangular and cylindrical batteries are reviewed, and the key finding of these studies is presented. It is shown that, in general, using counterflow configuration creates a rather uniform temperature distribution in the battery cell and keeps the maximum temperature difference below 5 ∘ C . The lowest battery maximum temperature is obtained for parallel and counterflow configurations in the straight and U-turn channels, respectively. In a parallel configuration, the peak point of the battery temperature is in the outlet area. However, in the counter-flow configuration, it occurs in the central region of the battery module. The survey of the literature further reveals that proper channel paths and flow configurations keep the battery maximum temperature within the safe range of 25 ∘ C &lt; T max &lt; 40 ∘ C . For such flow configurations, the pressure drop remains minimally affected.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12092-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Channels ; Chemistry ; Chemistry and Materials Science ; Configurations ; Counterflow ; Inorganic Chemistry ; Literature reviews ; Lithium-ion batteries ; Measurement Science and Instrumentation ; Operating temperature ; Physical Chemistry ; Polymer Sciences ; Pressure drop ; Rechargeable batteries ; Temperature ; Temperature distribution ; Temperature gradients ; Thermal management</subject><ispartof>Journal of thermal analysis and calorimetry, 2023-08, Vol.148 (16), p.7959-7979</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8c7e5b0c6aaeb86d2f6e8ff0c1358169cb89d5a6ffd8a56cb0cc87520929ca8e3</citedby><cites>FETCH-LOGICAL-c392t-8c7e5b0c6aaeb86d2f6e8ff0c1358169cb89d5a6ffd8a56cb0cc87520929ca8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-023-12092-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-023-12092-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sarvar-Ardeh, Sajjad</creatorcontrib><creatorcontrib>Rashidi, Saman</creatorcontrib><creatorcontrib>Rafee, Roohollah</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><title>A review on the applications of micro-/mini-channels for battery thermal management</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, different types of lithium-ion batteries and their advantages and disadvantages are introduced, and the components of batteries are described in detail. The studies conducted on the performance of micro-/mini-channels for cooling all types of rectangular and cylindrical batteries are reviewed, and the key finding of these studies is presented. It is shown that, in general, using counterflow configuration creates a rather uniform temperature distribution in the battery cell and keeps the maximum temperature difference below 5 ∘ C . The lowest battery maximum temperature is obtained for parallel and counterflow configurations in the straight and U-turn channels, respectively. In a parallel configuration, the peak point of the battery temperature is in the outlet area. However, in the counter-flow configuration, it occurs in the central region of the battery module. The survey of the literature further reveals that proper channel paths and flow configurations keep the battery maximum temperature within the safe range of 25 ∘ C &lt; T max &lt; 40 ∘ C . For such flow configurations, the pressure drop remains minimally affected.</description><subject>Analytical Chemistry</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Configurations</subject><subject>Counterflow</subject><subject>Inorganic Chemistry</subject><subject>Literature reviews</subject><subject>Lithium-ion batteries</subject><subject>Measurement Science and Instrumentation</subject><subject>Operating temperature</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Rechargeable batteries</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermal management</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rXCEUhi-hhaRJ_0BXQlddmPgRvbocQpsGAoEmXcsZ5zgx3KtTddrk39fpLZRsigsP8jzqOe8wfODsnDM2XlTO7CgpE5Jywayg-mg44coYKqzQb3ote625YsfDu1qfGGPWMn4y3K9IwZ8Rf5GcSHtEArvdFD20mFMlOZA5-pLpxRxTpP4RUsKpkpALWUNrWF4OUplhIjMk2OKMqZ0NbwNMFd__3U-H718-P1x9pbd31zdXq1vqpRWNGj-iWjOvAXBt9EYEjSYE5rlUhmvr18ZuFOgQNgaU9h31ZlSH9qwHg_J0-Ljcuyv5xx5rc095X1J_0glzyS9Vn4zs1PlCbWFCF1PIrYDva4O9t5wwxH6-GpWRRox87MKnV0JnGj63LexrdTf3316zYmH7kGotGNyuxBnKi-PMHZJxSzKuJ-P-JON0l-Qi1Q6nLZZ___6P9Rt50ZCO</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Sarvar-Ardeh, Sajjad</creator><creator>Rashidi, Saman</creator><creator>Rafee, Roohollah</creator><creator>Karimi, Nader</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230801</creationdate><title>A review on the applications of micro-/mini-channels for battery thermal management</title><author>Sarvar-Ardeh, Sajjad ; Rashidi, Saman ; Rafee, Roohollah ; Karimi, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8c7e5b0c6aaeb86d2f6e8ff0c1358169cb89d5a6ffd8a56cb0cc87520929ca8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Configurations</topic><topic>Counterflow</topic><topic>Inorganic Chemistry</topic><topic>Literature reviews</topic><topic>Lithium-ion batteries</topic><topic>Measurement Science and Instrumentation</topic><topic>Operating temperature</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Rechargeable batteries</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarvar-Ardeh, Sajjad</creatorcontrib><creatorcontrib>Rashidi, Saman</creatorcontrib><creatorcontrib>Rafee, Roohollah</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarvar-Ardeh, Sajjad</au><au>Rashidi, Saman</au><au>Rafee, Roohollah</au><au>Karimi, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on the applications of micro-/mini-channels for battery thermal management</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>148</volume><issue>16</issue><spage>7959</spage><epage>7979</epage><pages>7959-7979</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, different types of lithium-ion batteries and their advantages and disadvantages are introduced, and the components of batteries are described in detail. The studies conducted on the performance of micro-/mini-channels for cooling all types of rectangular and cylindrical batteries are reviewed, and the key finding of these studies is presented. It is shown that, in general, using counterflow configuration creates a rather uniform temperature distribution in the battery cell and keeps the maximum temperature difference below 5 ∘ C . The lowest battery maximum temperature is obtained for parallel and counterflow configurations in the straight and U-turn channels, respectively. In a parallel configuration, the peak point of the battery temperature is in the outlet area. However, in the counter-flow configuration, it occurs in the central region of the battery module. The survey of the literature further reveals that proper channel paths and flow configurations keep the battery maximum temperature within the safe range of 25 ∘ C &lt; T max &lt; 40 ∘ C . For such flow configurations, the pressure drop remains minimally affected.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12092-6</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2023-08, Vol.148 (16), p.7959-7979
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2841450073
source SpringerLink Journals
subjects Analytical Chemistry
Channels
Chemistry
Chemistry and Materials Science
Configurations
Counterflow
Inorganic Chemistry
Literature reviews
Lithium-ion batteries
Measurement Science and Instrumentation
Operating temperature
Physical Chemistry
Polymer Sciences
Pressure drop
Rechargeable batteries
Temperature
Temperature distribution
Temperature gradients
Thermal management
title A review on the applications of micro-/mini-channels for battery thermal management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20the%20applications%20of%20micro-/mini-channels%20for%20battery%20thermal%20management&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Sarvar-Ardeh,%20Sajjad&rft.date=2023-08-01&rft.volume=148&rft.issue=16&rft.spage=7959&rft.epage=7979&rft.pages=7959-7979&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12092-6&rft_dat=%3Cgale_proqu%3EA758382717%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841450073&rft_id=info:pmid/&rft_galeid=A758382717&rfr_iscdi=true