Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution

Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical models and computer simulations 2023-08, Vol.15 (4), p.654-659
Hauptverfasser: Borzykh, D. A., Yazykov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 4
container_start_page 654
container_title Mathematical models and computer simulations
container_volume 15
creator Borzykh, D. A.
Yazykov, A. A.
description Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.
doi_str_mv 10.1134/S2070048223040026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zRx2JUWKFIRi8I6cmKnclvi4p9Fd1yD63ESXAXBAjGbGT1972lmEDoncEkI41dLCgUAF5Qy4AA0P0KDg5QBL-H4Zxb0FI28X0MqRgvBxADFZXCxCdHJLb5xWm7wTAfdBGM7bDo8icE6vXLa-6QkZmo7ZUI_zxPprN9oJX0wjQl7_GiV3l7jqfQa2xYvQ1S6C5_vHx7PjA_O1PFgPkMnrdx6PfruQ_Ryd_s8nWeLp_uH6WSRNUSwPFNMtGMuYVwWqhR10ShRkLxutcwV1OmEEqCVspA55wIobSjXhGpFWiW5UIwN0UWfu3P2LWofqrWNLu3uKyo44bwkZZEo0lNNusY73VY7Z16l21cEqsODqz8PTh7ae3xiu5V2v8n_m74Atrt-3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449197</pqid></control><display><type>article</type><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><source>SpringerNature Journals</source><creator>Borzykh, D. A. ; Yazykov, A. A.</creator><creatorcontrib>Borzykh, D. A. ; Yazykov, A. A.</creatorcontrib><description>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048223040026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Autoregressive models ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Random errors ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2023-08, Vol.15 (4), p.654-659</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 654–659. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 1, pp. 51–58.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048223040026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048223040026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borzykh, D. A.</creatorcontrib><creatorcontrib>Yazykov, A. A.</creatorcontrib><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</description><subject>Autoregressive models</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random errors</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zRx2JUWKFIRi8I6cmKnclvi4p9Fd1yD63ESXAXBAjGbGT1972lmEDoncEkI41dLCgUAF5Qy4AA0P0KDg5QBL-H4Zxb0FI28X0MqRgvBxADFZXCxCdHJLb5xWm7wTAfdBGM7bDo8icE6vXLa-6QkZmo7ZUI_zxPprN9oJX0wjQl7_GiV3l7jqfQa2xYvQ1S6C5_vHx7PjA_O1PFgPkMnrdx6PfruQ_Ryd_s8nWeLp_uH6WSRNUSwPFNMtGMuYVwWqhR10ShRkLxutcwV1OmEEqCVspA55wIobSjXhGpFWiW5UIwN0UWfu3P2LWofqrWNLu3uKyo44bwkZZEo0lNNusY73VY7Z16l21cEqsODqz8PTh7ae3xiu5V2v8n_m74Atrt-3Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Borzykh, D. A.</creator><creator>Yazykov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><author>Borzykh, D. A. ; Yazykov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autoregressive models</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random errors</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzykh, D. A.</creatorcontrib><creatorcontrib>Yazykov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzykh, D. A.</au><au>Yazykov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>654</spage><epage>659</epage><pages>654-659</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048223040026</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0482
ispartof Mathematical models and computer simulations, 2023-08, Vol.15 (4), p.654-659
issn 2070-0482
2070-0490
language eng
recordid cdi_proquest_journals_2841449197
source SpringerNature Journals
subjects Autoregressive models
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Random errors
Simulation and Modeling
title Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Break%20Detection%20in%20Autoregressional%20Conditional%20Heteroskedasticity%20Model:%20Case%20of%20Student%E2%80%99s%20Distribution&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Borzykh,%20D.%20A.&rft.date=2023-08-01&rft.volume=15&rft.issue=4&rft.spage=654&rft.epage=659&rft.pages=654-659&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048223040026&rft_dat=%3Cproquest_cross%3E2841449197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841449197&rft_id=info:pmid/&rfr_iscdi=true