Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution
Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL meth...
Gespeichert in:
Veröffentlicht in: | Mathematical models and computer simulations 2023-08, Vol.15 (4), p.654-659 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 4 |
container_start_page | 654 |
container_title | Mathematical models and computer simulations |
container_volume | 15 |
creator | Borzykh, D. A. Yazykov, A. A. |
description | Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break. |
doi_str_mv | 10.1134/S2070048223040026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zRx2JUWKFIRi8I6cmKnclvi4p9Fd1yD63ESXAXBAjGbGT1972lmEDoncEkI41dLCgUAF5Qy4AA0P0KDg5QBL-H4Zxb0FI28X0MqRgvBxADFZXCxCdHJLb5xWm7wTAfdBGM7bDo8icE6vXLa-6QkZmo7ZUI_zxPprN9oJX0wjQl7_GiV3l7jqfQa2xYvQ1S6C5_vHx7PjA_O1PFgPkMnrdx6PfruQ_Ryd_s8nWeLp_uH6WSRNUSwPFNMtGMuYVwWqhR10ShRkLxutcwV1OmEEqCVspA55wIobSjXhGpFWiW5UIwN0UWfu3P2LWofqrWNLu3uKyo44bwkZZEo0lNNusY73VY7Z16l21cEqsODqz8PTh7ae3xiu5V2v8n_m74Atrt-3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449197</pqid></control><display><type>article</type><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><source>SpringerNature Journals</source><creator>Borzykh, D. A. ; Yazykov, A. A.</creator><creatorcontrib>Borzykh, D. A. ; Yazykov, A. A.</creatorcontrib><description>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048223040026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Autoregressive models ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Random errors ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2023-08, Vol.15 (4), p.654-659</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 4, pp. 654–659. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 1, pp. 51–58.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048223040026$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048223040026$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Borzykh, D. A.</creatorcontrib><creatorcontrib>Yazykov, A. A.</creatorcontrib><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</description><subject>Autoregressive models</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random errors</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zRx2JUWKFIRi8I6cmKnclvi4p9Fd1yD63ESXAXBAjGbGT1972lmEDoncEkI41dLCgUAF5Qy4AA0P0KDg5QBL-H4Zxb0FI28X0MqRgvBxADFZXCxCdHJLb5xWm7wTAfdBGM7bDo8icE6vXLa-6QkZmo7ZUI_zxPprN9oJX0wjQl7_GiV3l7jqfQa2xYvQ1S6C5_vHx7PjA_O1PFgPkMnrdx6PfruQ_Ryd_s8nWeLp_uH6WSRNUSwPFNMtGMuYVwWqhR10ShRkLxutcwV1OmEEqCVspA55wIobSjXhGpFWiW5UIwN0UWfu3P2LWofqrWNLu3uKyo44bwkZZEo0lNNusY73VY7Z16l21cEqsODqz8PTh7ae3xiu5V2v8n_m74Atrt-3Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Borzykh, D. A.</creator><creator>Yazykov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</title><author>Borzykh, D. A. ; Yazykov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1836-d38f54a0597d98b7cd8716bfea6d0b327900faa7a6448022c24e12ed1fda48d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autoregressive models</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random errors</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzykh, D. A.</creatorcontrib><creatorcontrib>Yazykov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzykh, D. A.</au><au>Yazykov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>654</spage><epage>659</epage><pages>654-659</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>Two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity are considered. The first method is based on Kolmogorov–Smirnov statistics and is called the KS method. The second one is based on the cumulative sums and is called the KL method. In this paper, the KS and KL methods are compared under the assumption of Student’s conditional distribution of random errors. The results of our Monte Carlo experiments are as follows: the KL method is inferior to the KS method both in terms of the average probability of errors of the first type and in terms of the average power of detecting a structural break.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048223040026</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0482 |
ispartof | Mathematical models and computer simulations, 2023-08, Vol.15 (4), p.654-659 |
issn | 2070-0482 2070-0490 |
language | eng |
recordid | cdi_proquest_journals_2841449197 |
source | SpringerNature Journals |
subjects | Autoregressive models Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Random errors Simulation and Modeling |
title | Structural Break Detection in Autoregressional Conditional Heteroskedasticity Model: Case of Student’s Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Break%20Detection%20in%20Autoregressional%20Conditional%20Heteroskedasticity%20Model:%20Case%20of%20Student%E2%80%99s%20Distribution&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Borzykh,%20D.%20A.&rft.date=2023-08-01&rft.volume=15&rft.issue=4&rft.spage=654&rft.epage=659&rft.pages=654-659&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048223040026&rft_dat=%3Cproquest_cross%3E2841449197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841449197&rft_id=info:pmid/&rfr_iscdi=true |