On the monodromy of elliptic surfaces
There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2023-06, Vol.255 (2), p.871-889 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 889 |
---|---|
container_issue | 2 |
container_start_page | 871 |
container_title | Israel journal of mathematics |
container_volume | 255 |
creator | Da Silva, Genival |
description | There have been several constructions of family of varieties with exceptional monodromy group [
2
], [
8
]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group
G
2
. In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis. |
doi_str_mv | 10.1007/s11856-022-2458-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giIUbD3dlO3BFVUJAqdYHZShwbWrVxsJOh_x5XQWJiuuHe9570MXaL8IAA1WNC1KrkQMRJKs3lGZuhKhXXCvGczQAIOWFFl-wqpR2AEhWKGbvfdMXw5YpD6EIbw-FYBF-4_X7bD1tbpDH62rp0zS58vU_u5vfO2cfL8_vyla83q7fl05pbKvXAiVovSpVnW121pKgUHlUtW9kgNflDFbUkFg1RXQM0ymlwVisrvAUhGjFnd1NvH8P36NJgdmGMXZ40pCVKuUBd5hROKRtDStF508ftoY5Hg2BONsxkw2Qb5mTDyMzQxKSc7T5d_Gv-H_oBBjhfjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449186</pqid></control><display><type>article</type><title>On the monodromy of elliptic surfaces</title><source>SpringerLink Journals</source><creator>Da Silva, Genival</creator><creatorcontrib>Da Silva, Genival</creatorcontrib><description>There have been several constructions of family of varieties with exceptional monodromy group [
2
], [
8
]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group
G
2
. In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-022-2458-4</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2023-06, Vol.255 (2), p.871-889</ispartof><rights>The Hebrew University of Jerusalem 2022</rights><rights>The Hebrew University of Jerusalem 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-022-2458-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-022-2458-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Da Silva, Genival</creatorcontrib><title>On the monodromy of elliptic surfaces</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>There have been several constructions of family of varieties with exceptional monodromy group [
2
], [
8
]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group
G
2
. In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giIUbD3dlO3BFVUJAqdYHZShwbWrVxsJOh_x5XQWJiuuHe9570MXaL8IAA1WNC1KrkQMRJKs3lGZuhKhXXCvGczQAIOWFFl-wqpR2AEhWKGbvfdMXw5YpD6EIbw-FYBF-4_X7bD1tbpDH62rp0zS58vU_u5vfO2cfL8_vyla83q7fl05pbKvXAiVovSpVnW121pKgUHlUtW9kgNflDFbUkFg1RXQM0ymlwVisrvAUhGjFnd1NvH8P36NJgdmGMXZ40pCVKuUBd5hROKRtDStF508ftoY5Hg2BONsxkw2Qb5mTDyMzQxKSc7T5d_Gv-H_oBBjhfjg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Da Silva, Genival</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>On the monodromy of elliptic surfaces</title><author>Da Silva, Genival</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Silva, Genival</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Silva, Genival</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the monodromy of elliptic surfaces</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>255</volume><issue>2</issue><spage>871</spage><epage>889</epage><pages>871-889</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>There have been several constructions of family of varieties with exceptional monodromy group [
2
], [
8
]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group
G
2
. In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-022-2458-4</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2023-06, Vol.255 (2), p.871-889 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2841449186 |
source | SpringerLink Journals |
subjects | Algebra Analysis Applications of Mathematics Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical |
title | On the monodromy of elliptic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20monodromy%20of%20elliptic%20surfaces&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Da%20Silva,%20Genival&rft.date=2023-06-01&rft.volume=255&rft.issue=2&rft.spage=871&rft.epage=889&rft.pages=871-889&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-022-2458-4&rft_dat=%3Cproquest_cross%3E2841449186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841449186&rft_id=info:pmid/&rfr_iscdi=true |