On the monodromy of elliptic surfaces

There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2023-06, Vol.255 (2), p.871-889
1. Verfasser: Da Silva, Genival
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 2
container_start_page 871
container_title Israel journal of mathematics
container_volume 255
creator Da Silva, Genival
description There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group G 2 . In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.
doi_str_mv 10.1007/s11856-022-2458-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841449186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841449186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giIUbD3dlO3BFVUJAqdYHZShwbWrVxsJOh_x5XQWJiuuHe9570MXaL8IAA1WNC1KrkQMRJKs3lGZuhKhXXCvGczQAIOWFFl-wqpR2AEhWKGbvfdMXw5YpD6EIbw-FYBF-4_X7bD1tbpDH62rp0zS58vU_u5vfO2cfL8_vyla83q7fl05pbKvXAiVovSpVnW121pKgUHlUtW9kgNflDFbUkFg1RXQM0ymlwVisrvAUhGjFnd1NvH8P36NJgdmGMXZ40pCVKuUBd5hROKRtDStF508ftoY5Hg2BONsxkw2Qb5mTDyMzQxKSc7T5d_Gv-H_oBBjhfjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841449186</pqid></control><display><type>article</type><title>On the monodromy of elliptic surfaces</title><source>SpringerLink Journals</source><creator>Da Silva, Genival</creator><creatorcontrib>Da Silva, Genival</creatorcontrib><description>There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group G 2 . In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-022-2458-4</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2023-06, Vol.255 (2), p.871-889</ispartof><rights>The Hebrew University of Jerusalem 2022</rights><rights>The Hebrew University of Jerusalem 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-022-2458-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-022-2458-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Da Silva, Genival</creatorcontrib><title>On the monodromy of elliptic surfaces</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group G 2 . In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giIUbD3dlO3BFVUJAqdYHZShwbWrVxsJOh_x5XQWJiuuHe9570MXaL8IAA1WNC1KrkQMRJKs3lGZuhKhXXCvGczQAIOWFFl-wqpR2AEhWKGbvfdMXw5YpD6EIbw-FYBF-4_X7bD1tbpDH62rp0zS58vU_u5vfO2cfL8_vyla83q7fl05pbKvXAiVovSpVnW121pKgUHlUtW9kgNflDFbUkFg1RXQM0ymlwVisrvAUhGjFnd1NvH8P36NJgdmGMXZ40pCVKuUBd5hROKRtDStF508ftoY5Hg2BONsxkw2Qb5mTDyMzQxKSc7T5d_Gv-H_oBBjhfjg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Da Silva, Genival</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>On the monodromy of elliptic surfaces</title><author>Da Silva, Genival</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-22df365565d87d25263f15a4d4b12b365272d239b22aa00b5e80ec85c3fc033b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Silva, Genival</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Silva, Genival</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the monodromy of elliptic surfaces</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>255</volume><issue>2</issue><spage>871</spage><epage>889</epage><pages>871-889</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>There have been several constructions of family of varieties with exceptional monodromy group [ 2 ], [ 8 ]. In most cases, these constructions give Hodge structures with high weight (Hodge numbers spread out). N. Katz was the first to obtain Hodge structures with low weight (Hodge numbers equal to (2, 3, 2)) and geometric monodromy group G 2 . In this article I will give an explicit proof of Katz’s result by finding all the monodromies in a given basis.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-022-2458-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2023-06, Vol.255 (2), p.871-889
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2841449186
source SpringerLink Journals
subjects Algebra
Analysis
Applications of Mathematics
Group Theory and Generalizations
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title On the monodromy of elliptic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20monodromy%20of%20elliptic%20surfaces&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Da%20Silva,%20Genival&rft.date=2023-06-01&rft.volume=255&rft.issue=2&rft.spage=871&rft.epage=889&rft.pages=871-889&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-022-2458-4&rft_dat=%3Cproquest_cross%3E2841449186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841449186&rft_id=info:pmid/&rfr_iscdi=true