Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks
The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-08, Vol.111 (16), p.15613-15631 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15631 |
---|---|
container_issue | 16 |
container_start_page | 15613 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Prodanov, Dimiter |
description | The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021. |
doi_str_mv | 10.1007/s11071-023-08656-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841207757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841207757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpG1a76R-DQYDv9hdyLLT2dkttUnBXfjfTa3onVc55Dzvgfch5JTBOQOQF44xkIwCFxSyNElptkdGLJGC8jSf75MR5DymkMP8kBw5twYAwSEbkc_CbprOa1_Zra4j7Ro03kW2jPwrRrppWvtRbbQPc9jvfGUiZ-uux3-px8lDtLFLrC_7QF0ZPay9Hb7rarvq2WL2MrmmLI9s5xct6jd3TA5KXTs8-XnH5Pn25qm4p9PZ3aS4mlIjUuGpTFgphEnQmCTLsUwFIKLki0QmS8ziZZzrhUy1wJRryA0ww0zKpMQ4jhFQjMnZcDfUee_QebW2XRsKOcWzmHGQMrgaEz5QprXOtViqpg3d251ioHrNatCsgmb1rVllISSGkAvwdoXt3-l_Ul-BkoGe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841207757</pqid></control><display><type>article</type><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><source>SpringerLink Journals</source><creator>Prodanov, Dimiter</creator><creatorcontrib>Prodanov, Dimiter</creatorcontrib><description>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08656-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Asymptotic methods ; Automotive Engineering ; Classical Mechanics ; Control ; Coronaviruses ; COVID-19 ; Disease transmission ; Dynamical Systems ; Engineering ; Epidemics ; Epidemiology ; Exact solutions ; Mathematical models ; Mechanical Engineering ; Ordinary differential equations ; Original Paper ; Outbreaks ; Pandemics ; Parameter estimation ; Quadratures ; Variables ; Vibration ; Viral diseases</subject><ispartof>Nonlinear dynamics, 2023-08, Vol.111 (16), p.15613-15631</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</citedby><cites>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</cites><orcidid>0000-0001-8694-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08656-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08656-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Prodanov, Dimiter</creatorcontrib><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>Parameter estimation</subject><subject>Quadratures</subject><subject>Variables</subject><subject>Vibration</subject><subject>Viral diseases</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpG1a76R-DQYDv9hdyLLT2dkttUnBXfjfTa3onVc55Dzvgfch5JTBOQOQF44xkIwCFxSyNElptkdGLJGC8jSf75MR5DymkMP8kBw5twYAwSEbkc_CbprOa1_Zra4j7Ro03kW2jPwrRrppWvtRbbQPc9jvfGUiZ-uux3-px8lDtLFLrC_7QF0ZPay9Hb7rarvq2WL2MrmmLI9s5xct6jd3TA5KXTs8-XnH5Pn25qm4p9PZ3aS4mlIjUuGpTFgphEnQmCTLsUwFIKLki0QmS8ziZZzrhUy1wJRryA0ww0zKpMQ4jhFQjMnZcDfUee_QebW2XRsKOcWzmHGQMrgaEz5QprXOtViqpg3d251ioHrNatCsgmb1rVllISSGkAvwdoXt3-l_Ul-BkoGe</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Prodanov, Dimiter</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8694-0535</orcidid></search><sort><creationdate>20230801</creationdate><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><author>Prodanov, Dimiter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>Parameter estimation</topic><topic>Quadratures</topic><topic>Variables</topic><topic>Vibration</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prodanov, Dimiter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prodanov, Dimiter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>111</volume><issue>16</issue><spage>15613</spage><epage>15631</epage><pages>15613-15631</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08656-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8694-0535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-08, Vol.111 (16), p.15613-15631 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2841207757 |
source | SpringerLink Journals |
subjects | Approximation Asymptotic methods Automotive Engineering Classical Mechanics Control Coronaviruses COVID-19 Disease transmission Dynamical Systems Engineering Epidemics Epidemiology Exact solutions Mathematical models Mechanical Engineering Ordinary differential equations Original Paper Outbreaks Pandemics Parameter estimation Quadratures Variables Vibration Viral diseases |
title | Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20aspects%20of%20the%20approximate%20analytic%20solutions%20of%20the%20SIR%20model:%20applications%20to%20modelling%20of%20COVID-19%20outbreaks&rft.jtitle=Nonlinear%20dynamics&rft.au=Prodanov,%20Dimiter&rft.date=2023-08-01&rft.volume=111&rft.issue=16&rft.spage=15613&rft.epage=15631&rft.pages=15613-15631&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08656-8&rft_dat=%3Cproquest_cross%3E2841207757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841207757&rft_id=info:pmid/&rfr_iscdi=true |