Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks

The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2023-08, Vol.111 (16), p.15613-15631
1. Verfasser: Prodanov, Dimiter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15631
container_issue 16
container_start_page 15613
container_title Nonlinear dynamics
container_volume 111
creator Prodanov, Dimiter
description The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.
doi_str_mv 10.1007/s11071-023-08656-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841207757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841207757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpG1a76R-DQYDv9hdyLLT2dkttUnBXfjfTa3onVc55Dzvgfch5JTBOQOQF44xkIwCFxSyNElptkdGLJGC8jSf75MR5DymkMP8kBw5twYAwSEbkc_CbprOa1_Zra4j7Ro03kW2jPwrRrppWvtRbbQPc9jvfGUiZ-uux3-px8lDtLFLrC_7QF0ZPay9Hb7rarvq2WL2MrmmLI9s5xct6jd3TA5KXTs8-XnH5Pn25qm4p9PZ3aS4mlIjUuGpTFgphEnQmCTLsUwFIKLki0QmS8ziZZzrhUy1wJRryA0ww0zKpMQ4jhFQjMnZcDfUee_QebW2XRsKOcWzmHGQMrgaEz5QprXOtViqpg3d251ioHrNatCsgmb1rVllISSGkAvwdoXt3-l_Ul-BkoGe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841207757</pqid></control><display><type>article</type><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><source>SpringerLink Journals</source><creator>Prodanov, Dimiter</creator><creatorcontrib>Prodanov, Dimiter</creatorcontrib><description>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08656-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Asymptotic methods ; Automotive Engineering ; Classical Mechanics ; Control ; Coronaviruses ; COVID-19 ; Disease transmission ; Dynamical Systems ; Engineering ; Epidemics ; Epidemiology ; Exact solutions ; Mathematical models ; Mechanical Engineering ; Ordinary differential equations ; Original Paper ; Outbreaks ; Pandemics ; Parameter estimation ; Quadratures ; Variables ; Vibration ; Viral diseases</subject><ispartof>Nonlinear dynamics, 2023-08, Vol.111 (16), p.15613-15631</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</citedby><cites>FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</cites><orcidid>0000-0001-8694-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08656-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08656-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Prodanov, Dimiter</creatorcontrib><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>Parameter estimation</subject><subject>Quadratures</subject><subject>Variables</subject><subject>Vibration</subject><subject>Viral diseases</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuC19GTpG1a76R-DQYDv9hdyLLT2dkttUnBXfjfTa3onVc55Dzvgfch5JTBOQOQF44xkIwCFxSyNElptkdGLJGC8jSf75MR5DymkMP8kBw5twYAwSEbkc_CbprOa1_Zra4j7Ro03kW2jPwrRrppWvtRbbQPc9jvfGUiZ-uux3-px8lDtLFLrC_7QF0ZPay9Hb7rarvq2WL2MrmmLI9s5xct6jd3TA5KXTs8-XnH5Pn25qm4p9PZ3aS4mlIjUuGpTFgphEnQmCTLsUwFIKLki0QmS8ziZZzrhUy1wJRryA0ww0zKpMQ4jhFQjMnZcDfUee_QebW2XRsKOcWzmHGQMrgaEz5QprXOtViqpg3d251ioHrNatCsgmb1rVllISSGkAvwdoXt3-l_Ul-BkoGe</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Prodanov, Dimiter</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8694-0535</orcidid></search><sort><creationdate>20230801</creationdate><title>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</title><author>Prodanov, Dimiter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-751f33c5ecc589ef630eee72b575de84d49ab76a3e62a09c01c1c6177e444e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>Parameter estimation</topic><topic>Quadratures</topic><topic>Variables</topic><topic>Vibration</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prodanov, Dimiter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prodanov, Dimiter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>111</volume><issue>16</issue><spage>15613</spage><epage>15631</epage><pages>15613-15631</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08656-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8694-0535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2023-08, Vol.111 (16), p.15613-15631
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2841207757
source SpringerLink Journals
subjects Approximation
Asymptotic methods
Automotive Engineering
Classical Mechanics
Control
Coronaviruses
COVID-19
Disease transmission
Dynamical Systems
Engineering
Epidemics
Epidemiology
Exact solutions
Mathematical models
Mechanical Engineering
Ordinary differential equations
Original Paper
Outbreaks
Pandemics
Parameter estimation
Quadratures
Variables
Vibration
Viral diseases
title Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20aspects%20of%20the%20approximate%20analytic%20solutions%20of%20the%20SIR%20model:%20applications%20to%20modelling%20of%20COVID-19%20outbreaks&rft.jtitle=Nonlinear%20dynamics&rft.au=Prodanov,%20Dimiter&rft.date=2023-08-01&rft.volume=111&rft.issue=16&rft.spage=15613&rft.epage=15631&rft.pages=15613-15631&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08656-8&rft_dat=%3Cproquest_cross%3E2841207757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841207757&rft_id=info:pmid/&rfr_iscdi=true