Incorporating Human Translator Style into English-Turkish Literary Machine Translation
Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take int...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yirmibeşoğlu, Zeynep Olgun Dursun Dallı, Harun Mehmet \c{S}ahin Hodzik, Ena Gürses, Sabri Güngör, Tunga |
description | Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2841196620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841196620</sourcerecordid><originalsourceid>FETCH-proquest_journals_28411966203</originalsourceid><addsrcrecordid>eNqNi0ELgjAYQEcQJOV_GHQW5qZm5zAM6pR0lSFLZ-ubfdsO_vs6ROdO7_DeW5CIC5EmZcb5isTOjYwxXux4nouI3E7QWZwsSq-hp3V4SqANSnBGeov06mejqAZvaQW90W5ImoCPD-lZe4USZ3qR3aBB_TZtYUOWd2mcir9ck-2xag51MqF9BeV8O9qA8FEtL7M03RcFZ-K_6g1wZEHn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841196620</pqid></control><display><type>article</type><title>Incorporating Human Translator Style into English-Turkish Literary Machine Translation</title><source>Free E- Journals</source><creator>Yirmibeşoğlu, Zeynep ; Olgun Dursun ; Dallı, Harun ; Mehmet \c{S}ahin ; Hodzik, Ena ; Gürses, Sabri ; Güngör, Tunga</creator><creatorcontrib>Yirmibeşoğlu, Zeynep ; Olgun Dursun ; Dallı, Harun ; Mehmet \c{S}ahin ; Hodzik, Ena ; Gürses, Sabri ; Güngör, Tunga</creatorcontrib><description>Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data augmentation ; English language ; Machine translation ; Translators</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Yirmibeşoğlu, Zeynep</creatorcontrib><creatorcontrib>Olgun Dursun</creatorcontrib><creatorcontrib>Dallı, Harun</creatorcontrib><creatorcontrib>Mehmet \c{S}ahin</creatorcontrib><creatorcontrib>Hodzik, Ena</creatorcontrib><creatorcontrib>Gürses, Sabri</creatorcontrib><creatorcontrib>Güngör, Tunga</creatorcontrib><title>Incorporating Human Translator Style into English-Turkish Literary Machine Translation</title><title>arXiv.org</title><description>Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.</description><subject>Data augmentation</subject><subject>English language</subject><subject>Machine translation</subject><subject>Translators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0ELgjAYQEcQJOV_GHQW5qZm5zAM6pR0lSFLZ-ubfdsO_vs6ROdO7_DeW5CIC5EmZcb5isTOjYwxXux4nouI3E7QWZwsSq-hp3V4SqANSnBGeov06mejqAZvaQW90W5ImoCPD-lZe4USZ3qR3aBB_TZtYUOWd2mcir9ck-2xag51MqF9BeV8O9qA8FEtL7M03RcFZ-K_6g1wZEHn</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>Yirmibeşoğlu, Zeynep</creator><creator>Olgun Dursun</creator><creator>Dallı, Harun</creator><creator>Mehmet \c{S}ahin</creator><creator>Hodzik, Ena</creator><creator>Gürses, Sabri</creator><creator>Güngör, Tunga</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230721</creationdate><title>Incorporating Human Translator Style into English-Turkish Literary Machine Translation</title><author>Yirmibeşoğlu, Zeynep ; Olgun Dursun ; Dallı, Harun ; Mehmet \c{S}ahin ; Hodzik, Ena ; Gürses, Sabri ; Güngör, Tunga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28411966203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data augmentation</topic><topic>English language</topic><topic>Machine translation</topic><topic>Translators</topic><toplevel>online_resources</toplevel><creatorcontrib>Yirmibeşoğlu, Zeynep</creatorcontrib><creatorcontrib>Olgun Dursun</creatorcontrib><creatorcontrib>Dallı, Harun</creatorcontrib><creatorcontrib>Mehmet \c{S}ahin</creatorcontrib><creatorcontrib>Hodzik, Ena</creatorcontrib><creatorcontrib>Gürses, Sabri</creatorcontrib><creatorcontrib>Güngör, Tunga</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yirmibeşoğlu, Zeynep</au><au>Olgun Dursun</au><au>Dallı, Harun</au><au>Mehmet \c{S}ahin</au><au>Hodzik, Ena</au><au>Gürses, Sabri</au><au>Güngör, Tunga</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Incorporating Human Translator Style into English-Turkish Literary Machine Translation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2841196620 |
source | Free E- Journals |
subjects | Data augmentation English language Machine translation Translators |
title | Incorporating Human Translator Style into English-Turkish Literary Machine Translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Incorporating%20Human%20Translator%20Style%20into%20English-Turkish%20Literary%20Machine%20Translation&rft.jtitle=arXiv.org&rft.au=Yirmibe%C5%9Fo%C4%9Flu,%20Zeynep&rft.date=2023-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2841196620%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841196620&rft_id=info:pmid/&rfr_iscdi=true |