A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion
Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zeinab Sadat Taghavi Satvaty, Ali Sameti, Hossein |
description | Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2841196263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841196263</sourcerecordid><originalsourceid>FETCH-proquest_journals_28411962633</originalsourceid><addsrcrecordid>eNqNzc0KwjAQBOAgCIr2HRY8B9pE689NSkUPXrT3EuvatNRsTVLRt7eID-BpBuaDGbCxkDLiq7kQIxY4V4dhKOKlWCzkmF22kGhlSgS6wR6V9Rs43FtLz8qUcG4RCw3pnXxFBk5YUGmqb_faUlfqH-GeeIYvD0e6qqbyb0jIPNG6nk7Z8KYah8EvJ2y2S7Nkz_uXR4fO5zV11vRTLlbzKFrHIpbyP_UBGTpFOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841196263</pqid></control><display><type>article</type><title>A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion</title><source>Free E- Journals</source><creator>Zeinab Sadat Taghavi ; Satvaty, Ali ; Sameti, Hossein</creator><creatorcontrib>Zeinab Sadat Taghavi ; Satvaty, Ali ; Sameti, Hossein</creatorcontrib><description>Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Conversion ; Datasets ; Emotion recognition ; Emotions</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zeinab Sadat Taghavi</creatorcontrib><creatorcontrib>Satvaty, Ali</creatorcontrib><creatorcontrib>Sameti, Hossein</creatorcontrib><title>A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion</title><title>arXiv.org</title><description>Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities.</description><subject>Automatic speech recognition</subject><subject>Conversion</subject><subject>Datasets</subject><subject>Emotion recognition</subject><subject>Emotions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzc0KwjAQBOAgCIr2HRY8B9pE689NSkUPXrT3EuvatNRsTVLRt7eID-BpBuaDGbCxkDLiq7kQIxY4V4dhKOKlWCzkmF22kGhlSgS6wR6V9Rs43FtLz8qUcG4RCw3pnXxFBk5YUGmqb_faUlfqH-GeeIYvD0e6qqbyb0jIPNG6nk7Z8KYah8EvJ2y2S7Nkz_uXR4fO5zV11vRTLlbzKFrHIpbyP_UBGTpFOA</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>Zeinab Sadat Taghavi</creator><creator>Satvaty, Ali</creator><creator>Sameti, Hossein</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230721</creationdate><title>A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion</title><author>Zeinab Sadat Taghavi ; Satvaty, Ali ; Sameti, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28411962633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic speech recognition</topic><topic>Conversion</topic><topic>Datasets</topic><topic>Emotion recognition</topic><topic>Emotions</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeinab Sadat Taghavi</creatorcontrib><creatorcontrib>Satvaty, Ali</creatorcontrib><creatorcontrib>Sameti, Hossein</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeinab Sadat Taghavi</au><au>Satvaty, Ali</au><au>Sameti, Hossein</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion</atitle><jtitle>arXiv.org</jtitle><date>2023-07-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Speech Emotion Recognition (SER) is a challenging task. In this paper, we introduce a modality conversion concept aimed at enhancing emotion recognition performance on the MELD dataset. We assess our approach through two experiments: first, a method named Modality-Conversion that employs automatic speech recognition (ASR) systems, followed by a text classifier; second, we assume perfect ASR output and investigate the impact of modality conversion on SER, this method is called Modality-Conversion++. Our findings indicate that the first method yields substantial results, while the second method outperforms state-of-the-art (SOTA) speech-based approaches in terms of SER weighted-F1 (WF1) score on the MELD dataset. This research highlights the potential of modality conversion for tasks that can be conducted in alternative modalities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2841196263 |
source | Free E- Journals |
subjects | Automatic speech recognition Conversion Datasets Emotion recognition Emotions |
title | A Change of Heart: Improving Speech Emotion Recognition through Speech-to-Text Modality Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Change%20of%20Heart:%20Improving%20Speech%20Emotion%20Recognition%20through%20Speech-to-Text%20Modality%20Conversion&rft.jtitle=arXiv.org&rft.au=Zeinab%20Sadat%20Taghavi&rft.date=2023-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2841196263%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841196263&rft_id=info:pmid/&rfr_iscdi=true |