Integration of the Kaup–Boussinesq system with time-dependent coefficients

We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2023-07, Vol.216 (1), p.961-972
Hauptverfasser: Babajanov, B. A., Azamatov, A. Sh, Atajanova, R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 1
container_start_page 961
container_title Theoretical and mathematical physics
container_volume 216
creator Babajanov, B. A.
Azamatov, A. Sh
Atajanova, R. B.
description We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–Liouville operators associated with the solution of the Kaup–Boussinesq system with time-dependent coefficients. The resulting equalities completely determine the scattering data at any , which allows using the inverse scattering method for solving the Cauchy problem for the Kaup–Boussinesq system with time-dependent coefficients. An example is given to illustrate the application of the obtained results.
doi_str_mv 10.1134/S004057792307005X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2841090670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841090670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e6c44b88a5de6636f2efe5f037e5164101aaa83d87098f14327d1cc3b5d3acae3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G7A9ejNZCbJLFX8KRZcqOBuSDM3bYpNpkkG6c538A19EqdUcCGu7oFzvnPhEHJK4ZxSVl48AZRQCVEXDARA9bpHRrQSLK8ZY_tktLXzrX9IjmJcAlAASUdkOnEJ50El613mTZYWmD2ovvv6-LzyfYzWYVxncRMTrrJ3mxZZsivMW-zQtehSpj0aY7UddDwmB0a9RTz5uWPycnvzfH2fTx_vJteX01wXXKYcuS7LmZSqapFzxk2BBisDTGBFeUmBKqUka6WAWhpaskK0VGs2q1qmtEI2Jme73i74dY8xNUvfBze8bAo58DVwAUOK7lI6-BgDmqYLdqXCpqHQbEdr_ow2MMWOiUPWzTH8Nv8PfQO5b2_S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841090670</pqid></control><display><type>article</type><title>Integration of the Kaup–Boussinesq system with time-dependent coefficients</title><source>SpringerLink Journals - AutoHoldings</source><creator>Babajanov, B. A. ; Azamatov, A. Sh ; Atajanova, R. B.</creator><creatorcontrib>Babajanov, B. A. ; Azamatov, A. Sh ; Atajanova, R. B.</creatorcontrib><description>We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–Liouville operators associated with the solution of the Kaup–Boussinesq system with time-dependent coefficients. The resulting equalities completely determine the scattering data at any , which allows using the inverse scattering method for solving the Cauchy problem for the Kaup–Boussinesq system with time-dependent coefficients. An example is given to illustrate the application of the obtained results.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S004057792307005X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Boussinesq equations ; Cauchy problems ; Coefficients ; Inverse scattering ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical ; Time dependence</subject><ispartof>Theoretical and mathematical physics, 2023-07, Vol.216 (1), p.961-972</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e6c44b88a5de6636f2efe5f037e5164101aaa83d87098f14327d1cc3b5d3acae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S004057792307005X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S004057792307005X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Babajanov, B. A.</creatorcontrib><creatorcontrib>Azamatov, A. Sh</creatorcontrib><creatorcontrib>Atajanova, R. B.</creatorcontrib><title>Integration of the Kaup–Boussinesq system with time-dependent coefficients</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–Liouville operators associated with the solution of the Kaup–Boussinesq system with time-dependent coefficients. The resulting equalities completely determine the scattering data at any , which allows using the inverse scattering method for solving the Cauchy problem for the Kaup–Boussinesq system with time-dependent coefficients. An example is given to illustrate the application of the obtained results.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Boussinesq equations</subject><subject>Cauchy problems</subject><subject>Coefficients</subject><subject>Inverse scattering</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Time dependence</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4G7A9ejNZCbJLFX8KRZcqOBuSDM3bYpNpkkG6c538A19EqdUcCGu7oFzvnPhEHJK4ZxSVl48AZRQCVEXDARA9bpHRrQSLK8ZY_tktLXzrX9IjmJcAlAASUdkOnEJ50El613mTZYWmD2ovvv6-LzyfYzWYVxncRMTrrJ3mxZZsivMW-zQtehSpj0aY7UddDwmB0a9RTz5uWPycnvzfH2fTx_vJteX01wXXKYcuS7LmZSqapFzxk2BBisDTGBFeUmBKqUka6WAWhpaskK0VGs2q1qmtEI2Jme73i74dY8xNUvfBze8bAo58DVwAUOK7lI6-BgDmqYLdqXCpqHQbEdr_ow2MMWOiUPWzTH8Nv8PfQO5b2_S</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Babajanov, B. A.</creator><creator>Azamatov, A. Sh</creator><creator>Atajanova, R. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Integration of the Kaup–Boussinesq system with time-dependent coefficients</title><author>Babajanov, B. A. ; Azamatov, A. Sh ; Atajanova, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e6c44b88a5de6636f2efe5f037e5164101aaa83d87098f14327d1cc3b5d3acae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Boussinesq equations</topic><topic>Cauchy problems</topic><topic>Coefficients</topic><topic>Inverse scattering</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babajanov, B. A.</creatorcontrib><creatorcontrib>Azamatov, A. Sh</creatorcontrib><creatorcontrib>Atajanova, R. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babajanov, B. A.</au><au>Azamatov, A. Sh</au><au>Atajanova, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of the Kaup–Boussinesq system with time-dependent coefficients</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>216</volume><issue>1</issue><spage>961</spage><epage>972</epage><pages>961-972</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–Liouville operators associated with the solution of the Kaup–Boussinesq system with time-dependent coefficients. The resulting equalities completely determine the scattering data at any , which allows using the inverse scattering method for solving the Cauchy problem for the Kaup–Boussinesq system with time-dependent coefficients. An example is given to illustrate the application of the obtained results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S004057792307005X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theoretical and mathematical physics, 2023-07, Vol.216 (1), p.961-972
issn 0040-5779
1573-9333
language eng
recordid cdi_proquest_journals_2841090670
source SpringerLink Journals - AutoHoldings
subjects 14/34
639/766/189
639/766/530
639/766/747
Applications of Mathematics
Boussinesq equations
Cauchy problems
Coefficients
Inverse scattering
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
Time dependence
title Integration of the Kaup–Boussinesq system with time-dependent coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20the%20Kaup%E2%80%93Boussinesq%20system%20with%20time-dependent%20coefficients&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Babajanov,%20B.%20A.&rft.date=2023-07-01&rft.volume=216&rft.issue=1&rft.spage=961&rft.epage=972&rft.pages=961-972&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S004057792307005X&rft_dat=%3Cproquest_cross%3E2841090670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841090670&rft_id=info:pmid/&rfr_iscdi=true