Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth

Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers from renewable resources 2023-08, Vol.14 (3), p.157-172
Hauptverfasser: PK, Remya, MS, Manju, Sunil, Abith, KS, Athulya, Joseph, Jerome, TU, Jyothsna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 3
container_start_page 157
container_title Polymers from renewable resources
container_volume 14
creator PK, Remya
MS, Manju
Sunil, Abith
KS, Athulya
Joseph, Jerome
TU, Jyothsna
description Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.
doi_str_mv 10.1177/20412479231174443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2840743814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_20412479231174443</sage_id><sourcerecordid>2840743814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPHdN0qRpj7L4DxY8qOCtDNPE7dJN1qRF6qc3awUFcQ6ZmR_vvcAQcs7ZknOtLwWTXEhdiTytUsr8iMwOLDvA41_zKVnEuGWpFEtQzMjL4-j6jYltpOAaihsIgL0J7Qf0rXfUW-rAeTRdN3Q-GmqD39F3SJKd6ZIgtK6ZvF-QbkbANkWekRMLXTSL7z4nzzfXT6u7bP1we7-6WmfIddVn6eGVgqKEtCuFjHOUOUdWMiUraSxaJhrWWFVajSJBBNkINAqMtkWRz8nFlLsP_m0wsa-3fggufVmLUjIt85LLpOKTCoOPMRhb70O7gzDWnNWHG9Z_bpg8y8kT4dX8pP5v-ASXLHE-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840743814</pqid></control><display><type>article</type><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><source>SAGE Complete A-Z List</source><creator>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</creator><creatorcontrib>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</creatorcontrib><description>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</description><identifier>ISSN: 2041-2479</identifier><identifier>EISSN: 2041-2479</identifier><identifier>DOI: 10.1177/20412479231174443</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aquatic plants ; Biocompatibility ; Biodegradability ; Biodegradation ; Bleaching ; Cellulose ; Chemical composition ; Content analysis ; Floating plants ; Fruits ; Hemicellulose ; Lignin ; Mechanical properties ; Nanocrystals ; Nanomaterials ; Natural polymers ; Pectin ; Polymers ; Precursors ; Thermal conductivity ; Thermal properties ; Thermal stability ; Thermodynamic properties ; Water hyacinths ; Water melons ; Weeds</subject><ispartof>Polymers from renewable resources, 2023-08, Vol.14 (3), p.157-172</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</cites><orcidid>0000-0001-7016-0024 ; 0000-0003-2637-9103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/20412479231174443$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/20412479231174443$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>PK, Remya</creatorcontrib><creatorcontrib>MS, Manju</creatorcontrib><creatorcontrib>Sunil, Abith</creatorcontrib><creatorcontrib>KS, Athulya</creatorcontrib><creatorcontrib>Joseph, Jerome</creatorcontrib><creatorcontrib>TU, Jyothsna</creatorcontrib><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><title>Polymers from renewable resources</title><description>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</description><subject>Aquatic plants</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bleaching</subject><subject>Cellulose</subject><subject>Chemical composition</subject><subject>Content analysis</subject><subject>Floating plants</subject><subject>Fruits</subject><subject>Hemicellulose</subject><subject>Lignin</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Natural polymers</subject><subject>Pectin</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Water hyacinths</subject><subject>Water melons</subject><subject>Weeds</subject><issn>2041-2479</issn><issn>2041-2479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPHdN0qRpj7L4DxY8qOCtDNPE7dJN1qRF6qc3awUFcQ6ZmR_vvcAQcs7ZknOtLwWTXEhdiTytUsr8iMwOLDvA41_zKVnEuGWpFEtQzMjL4-j6jYltpOAaihsIgL0J7Qf0rXfUW-rAeTRdN3Q-GmqD39F3SJKd6ZIgtK6ZvF-QbkbANkWekRMLXTSL7z4nzzfXT6u7bP1we7-6WmfIddVn6eGVgqKEtCuFjHOUOUdWMiUraSxaJhrWWFVajSJBBNkINAqMtkWRz8nFlLsP_m0wsa-3fggufVmLUjIt85LLpOKTCoOPMRhb70O7gzDWnNWHG9Z_bpg8y8kT4dX8pP5v-ASXLHE-</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>PK, Remya</creator><creator>MS, Manju</creator><creator>Sunil, Abith</creator><creator>KS, Athulya</creator><creator>Joseph, Jerome</creator><creator>TU, Jyothsna</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7016-0024</orcidid><orcidid>https://orcid.org/0000-0003-2637-9103</orcidid></search><sort><creationdate>20230801</creationdate><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><author>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic plants</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bleaching</topic><topic>Cellulose</topic><topic>Chemical composition</topic><topic>Content analysis</topic><topic>Floating plants</topic><topic>Fruits</topic><topic>Hemicellulose</topic><topic>Lignin</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Natural polymers</topic><topic>Pectin</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Water hyacinths</topic><topic>Water melons</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PK, Remya</creatorcontrib><creatorcontrib>MS, Manju</creatorcontrib><creatorcontrib>Sunil, Abith</creatorcontrib><creatorcontrib>KS, Athulya</creatorcontrib><creatorcontrib>Joseph, Jerome</creatorcontrib><creatorcontrib>TU, Jyothsna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Polymers from renewable resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PK, Remya</au><au>MS, Manju</au><au>Sunil, Abith</au><au>KS, Athulya</au><au>Joseph, Jerome</au><au>TU, Jyothsna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</atitle><jtitle>Polymers from renewable resources</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>2041-2479</issn><eissn>2041-2479</eissn><abstract>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/20412479231174443</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7016-0024</orcidid><orcidid>https://orcid.org/0000-0003-2637-9103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-2479
ispartof Polymers from renewable resources, 2023-08, Vol.14 (3), p.157-172
issn 2041-2479
2041-2479
language eng
recordid cdi_proquest_journals_2840743814
source SAGE Complete A-Z List
subjects Aquatic plants
Biocompatibility
Biodegradability
Biodegradation
Bleaching
Cellulose
Chemical composition
Content analysis
Floating plants
Fruits
Hemicellulose
Lignin
Mechanical properties
Nanocrystals
Nanomaterials
Natural polymers
Pectin
Polymers
Precursors
Thermal conductivity
Thermal properties
Thermal stability
Thermodynamic properties
Water hyacinths
Water melons
Weeds
title Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20nanocellulose%20from%20watermelon%20rinds%20and%20water%20hyacinth&rft.jtitle=Polymers%20from%20renewable%20resources&rft.au=PK,%20Remya&rft.date=2023-08-01&rft.volume=14&rft.issue=3&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=2041-2479&rft.eissn=2041-2479&rft_id=info:doi/10.1177/20412479231174443&rft_dat=%3Cproquest_cross%3E2840743814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840743814&rft_id=info:pmid/&rft_sage_id=10.1177_20412479231174443&rfr_iscdi=true