Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth
Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two f...
Gespeichert in:
Veröffentlicht in: | Polymers from renewable resources 2023-08, Vol.14 (3), p.157-172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 3 |
container_start_page | 157 |
container_title | Polymers from renewable resources |
container_volume | 14 |
creator | PK, Remya MS, Manju Sunil, Abith KS, Athulya Joseph, Jerome TU, Jyothsna |
description | Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer. |
doi_str_mv | 10.1177/20412479231174443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2840743814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_20412479231174443</sage_id><sourcerecordid>2840743814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPHdN0qRpj7L4DxY8qOCtDNPE7dJN1qRF6qc3awUFcQ6ZmR_vvcAQcs7ZknOtLwWTXEhdiTytUsr8iMwOLDvA41_zKVnEuGWpFEtQzMjL4-j6jYltpOAaihsIgL0J7Qf0rXfUW-rAeTRdN3Q-GmqD39F3SJKd6ZIgtK6ZvF-QbkbANkWekRMLXTSL7z4nzzfXT6u7bP1we7-6WmfIddVn6eGVgqKEtCuFjHOUOUdWMiUraSxaJhrWWFVajSJBBNkINAqMtkWRz8nFlLsP_m0wsa-3fggufVmLUjIt85LLpOKTCoOPMRhb70O7gzDWnNWHG9Z_bpg8y8kT4dX8pP5v-ASXLHE-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840743814</pqid></control><display><type>article</type><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><source>SAGE Complete A-Z List</source><creator>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</creator><creatorcontrib>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</creatorcontrib><description>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</description><identifier>ISSN: 2041-2479</identifier><identifier>EISSN: 2041-2479</identifier><identifier>DOI: 10.1177/20412479231174443</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aquatic plants ; Biocompatibility ; Biodegradability ; Biodegradation ; Bleaching ; Cellulose ; Chemical composition ; Content analysis ; Floating plants ; Fruits ; Hemicellulose ; Lignin ; Mechanical properties ; Nanocrystals ; Nanomaterials ; Natural polymers ; Pectin ; Polymers ; Precursors ; Thermal conductivity ; Thermal properties ; Thermal stability ; Thermodynamic properties ; Water hyacinths ; Water melons ; Weeds</subject><ispartof>Polymers from renewable resources, 2023-08, Vol.14 (3), p.157-172</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</cites><orcidid>0000-0001-7016-0024 ; 0000-0003-2637-9103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/20412479231174443$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/20412479231174443$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>PK, Remya</creatorcontrib><creatorcontrib>MS, Manju</creatorcontrib><creatorcontrib>Sunil, Abith</creatorcontrib><creatorcontrib>KS, Athulya</creatorcontrib><creatorcontrib>Joseph, Jerome</creatorcontrib><creatorcontrib>TU, Jyothsna</creatorcontrib><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><title>Polymers from renewable resources</title><description>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</description><subject>Aquatic plants</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Bleaching</subject><subject>Cellulose</subject><subject>Chemical composition</subject><subject>Content analysis</subject><subject>Floating plants</subject><subject>Fruits</subject><subject>Hemicellulose</subject><subject>Lignin</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Natural polymers</subject><subject>Pectin</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Water hyacinths</subject><subject>Water melons</subject><subject>Weeds</subject><issn>2041-2479</issn><issn>2041-2479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPHdN0qRpj7L4DxY8qOCtDNPE7dJN1qRF6qc3awUFcQ6ZmR_vvcAQcs7ZknOtLwWTXEhdiTytUsr8iMwOLDvA41_zKVnEuGWpFEtQzMjL4-j6jYltpOAaihsIgL0J7Qf0rXfUW-rAeTRdN3Q-GmqD39F3SJKd6ZIgtK6ZvF-QbkbANkWekRMLXTSL7z4nzzfXT6u7bP1we7-6WmfIddVn6eGVgqKEtCuFjHOUOUdWMiUraSxaJhrWWFVajSJBBNkINAqMtkWRz8nFlLsP_m0wsa-3fggufVmLUjIt85LLpOKTCoOPMRhb70O7gzDWnNWHG9Z_bpg8y8kT4dX8pP5v-ASXLHE-</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>PK, Remya</creator><creator>MS, Manju</creator><creator>Sunil, Abith</creator><creator>KS, Athulya</creator><creator>Joseph, Jerome</creator><creator>TU, Jyothsna</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7016-0024</orcidid><orcidid>https://orcid.org/0000-0003-2637-9103</orcidid></search><sort><creationdate>20230801</creationdate><title>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</title><author>PK, Remya ; MS, Manju ; Sunil, Abith ; KS, Athulya ; Joseph, Jerome ; TU, Jyothsna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-179195a68ac1755c011c431c0805494efcf02d0df58f7c2054ca4d2ce5ae7f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic plants</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Bleaching</topic><topic>Cellulose</topic><topic>Chemical composition</topic><topic>Content analysis</topic><topic>Floating plants</topic><topic>Fruits</topic><topic>Hemicellulose</topic><topic>Lignin</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Natural polymers</topic><topic>Pectin</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Water hyacinths</topic><topic>Water melons</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PK, Remya</creatorcontrib><creatorcontrib>MS, Manju</creatorcontrib><creatorcontrib>Sunil, Abith</creatorcontrib><creatorcontrib>KS, Athulya</creatorcontrib><creatorcontrib>Joseph, Jerome</creatorcontrib><creatorcontrib>TU, Jyothsna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Polymers from renewable resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PK, Remya</au><au>MS, Manju</au><au>Sunil, Abith</au><au>KS, Athulya</au><au>Joseph, Jerome</au><au>TU, Jyothsna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth</atitle><jtitle>Polymers from renewable resources</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>2041-2479</issn><eissn>2041-2479</eissn><abstract>Nanocellulose derived from cellulose, the abundant natural polymer, is used in various applications due to its superior chemical, mechanical and thermal properties along with good biocompatibility and biodegradability. This paper reports an investigation of the extraction of nanocellulose from two freely available natural precursors-watermelon rinds and water hyacinth leaves. Cellulose isolation was carried out through chemical methods, including acid and alkali treatments followed by bleaching. The chemical composition, percentage crystallinity and particle size were studied using various characterization techniques. FTIR spectra indicate the removal of hemicelluloses, pectin, and lignin resulting in the effective isolation of cellulose from both precursors. Results of XRD indicate a high concentration of Cellulose Nanocrystals (CNCs) in the treated sample. The FESEM and SEM-EDAX images also confirm the formation of CNCs. TGA and DSC results show excellent thermal stability for both CNCs. Investigations on the properties of a CNC-reinforced epoxy composite are also reported. Results indicate considerable improvement in the mechanical properties, thermal stability and thermal conductivity of the composites compared to the pristine polymer.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/20412479231174443</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7016-0024</orcidid><orcidid>https://orcid.org/0000-0003-2637-9103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-2479 |
ispartof | Polymers from renewable resources, 2023-08, Vol.14 (3), p.157-172 |
issn | 2041-2479 2041-2479 |
language | eng |
recordid | cdi_proquest_journals_2840743814 |
source | SAGE Complete A-Z List |
subjects | Aquatic plants Biocompatibility Biodegradability Biodegradation Bleaching Cellulose Chemical composition Content analysis Floating plants Fruits Hemicellulose Lignin Mechanical properties Nanocrystals Nanomaterials Natural polymers Pectin Polymers Precursors Thermal conductivity Thermal properties Thermal stability Thermodynamic properties Water hyacinths Water melons Weeds |
title | Synthesis and characterization of nanocellulose from watermelon rinds and water hyacinth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20nanocellulose%20from%20watermelon%20rinds%20and%20water%20hyacinth&rft.jtitle=Polymers%20from%20renewable%20resources&rft.au=PK,%20Remya&rft.date=2023-08-01&rft.volume=14&rft.issue=3&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=2041-2479&rft.eissn=2041-2479&rft_id=info:doi/10.1177/20412479231174443&rft_dat=%3Cproquest_cross%3E2840743814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840743814&rft_id=info:pmid/&rft_sage_id=10.1177_20412479231174443&rfr_iscdi=true |