Cross-modal attention guided visual reasoning for referring image segmentation
The goal of referring image segmentation (RIS) is to generate the foreground mask of the object described by a natural language expression. The key of RIS is to learn the valid multimodal features between visual and linguistic modalities to identify the referred object accurately. In this paper, a c...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-08, Vol.82 (19), p.28853-28872 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28872 |
---|---|
container_issue | 19 |
container_start_page | 28853 |
container_title | Multimedia tools and applications |
container_volume | 82 |
creator | Zhang, Wenjing Hu, Mengnan Tan, Quange Zhou, Qianli Wang, Rong |
description | The goal of referring image segmentation (RIS) is to generate the foreground mask of the object described by a natural language expression. The key of RIS is to learn the valid multimodal features between visual and linguistic modalities to identify the referred object accurately. In this paper, a cross-modal attention-guided visual reasoning model for referring segmentation is proposed. First, the multi-scale detailed information is captured by a pyramidal convolution module to enhance visual representation. Then, the entity words of the referring expression and relevant image regions are aligned by a cross-modal attention mechanism. Based on this, all the entities described by the expression can be identified. Finally, a fully connected multimodal graph is constructed with multimodal features and relationship cues of expressions. Visual reasoning is performed stepwisely on the graph to highlight the correct entity whiling suppressing other irrelevant ones. The experiment results on four benchmark datasets show that the proposed method achieves performance improvement (e.g., +1.13% on UNC, +3.06% on UNC+, +2.1% on G-Ref, and 1.11% on ReferIt). Also, the effectiveness and feasibility of each component of our method are verified by extensive ablation studies. |
doi_str_mv | 10.1007/s11042-023-14586-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2840671250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840671250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-549c0ed7427ff597ec09845a8848841ae7b15f0edb7e757f7039d6f9495a4ed53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJmnSaoyzqCote9Byy7aR02W3XpBX896ZW8CYMZCa8z3y8jF0LuBUAeBeFACU5yJwLpcuCmxO2EBpzjijFacrzEjhqEOfsIsYdgCi0VAv2sgp9jPzQ126fuWGgbmj7LmvGtqY6-2zjmP4Dudh3bddkvg-p8hTCVLUH11AWqTkkzE3gJTvzbh_p6vddsvfHh7fVmm9en55X9xteSYSBa2UqoBqVRO-1QarAlEq7slQphCPcCu2TYouEGj1CburCG2W0U1TrfMlu5r7H0H-MFAe768fQpZFWlgoKFFJDUslZVU1Hpr3tMaSdw5cVYCff7OybTb7ZH9-sSVA-Q_E4HUnhr_U_1Dek-nC3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840671250</pqid></control><display><type>article</type><title>Cross-modal attention guided visual reasoning for referring image segmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Wenjing ; Hu, Mengnan ; Tan, Quange ; Zhou, Qianli ; Wang, Rong</creator><creatorcontrib>Zhang, Wenjing ; Hu, Mengnan ; Tan, Quange ; Zhou, Qianli ; Wang, Rong</creatorcontrib><description>The goal of referring image segmentation (RIS) is to generate the foreground mask of the object described by a natural language expression. The key of RIS is to learn the valid multimodal features between visual and linguistic modalities to identify the referred object accurately. In this paper, a cross-modal attention-guided visual reasoning model for referring segmentation is proposed. First, the multi-scale detailed information is captured by a pyramidal convolution module to enhance visual representation. Then, the entity words of the referring expression and relevant image regions are aligned by a cross-modal attention mechanism. Based on this, all the entities described by the expression can be identified. Finally, a fully connected multimodal graph is constructed with multimodal features and relationship cues of expressions. Visual reasoning is performed stepwisely on the graph to highlight the correct entity whiling suppressing other irrelevant ones. The experiment results on four benchmark datasets show that the proposed method achieves performance improvement (e.g., +1.13% on UNC, +3.06% on UNC+, +2.1% on G-Ref, and 1.11% on ReferIt). Also, the effectiveness and feasibility of each component of our method are verified by extensive ablation studies.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-14586-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Image segmentation ; Keywords ; Language ; Linguistics ; Methods ; Multimedia ; Multimedia Information Systems ; Natural language ; Neural networks ; Reasoning ; Semantics ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2023-08, Vol.82 (19), p.28853-28872</ispartof><rights>Crown 2023</rights><rights>Crown 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-549c0ed7427ff597ec09845a8848841ae7b15f0edb7e757f7039d6f9495a4ed53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-14586-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-14586-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Hu, Mengnan</creatorcontrib><creatorcontrib>Tan, Quange</creatorcontrib><creatorcontrib>Zhou, Qianli</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><title>Cross-modal attention guided visual reasoning for referring image segmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The goal of referring image segmentation (RIS) is to generate the foreground mask of the object described by a natural language expression. The key of RIS is to learn the valid multimodal features between visual and linguistic modalities to identify the referred object accurately. In this paper, a cross-modal attention-guided visual reasoning model for referring segmentation is proposed. First, the multi-scale detailed information is captured by a pyramidal convolution module to enhance visual representation. Then, the entity words of the referring expression and relevant image regions are aligned by a cross-modal attention mechanism. Based on this, all the entities described by the expression can be identified. Finally, a fully connected multimodal graph is constructed with multimodal features and relationship cues of expressions. Visual reasoning is performed stepwisely on the graph to highlight the correct entity whiling suppressing other irrelevant ones. The experiment results on four benchmark datasets show that the proposed method achieves performance improvement (e.g., +1.13% on UNC, +3.06% on UNC+, +2.1% on G-Ref, and 1.11% on ReferIt). Also, the effectiveness and feasibility of each component of our method are verified by extensive ablation studies.</description><subject>Ablation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Image segmentation</subject><subject>Keywords</subject><subject>Language</subject><subject>Linguistics</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJmnSaoyzqCote9Byy7aR02W3XpBX896ZW8CYMZCa8z3y8jF0LuBUAeBeFACU5yJwLpcuCmxO2EBpzjijFacrzEjhqEOfsIsYdgCi0VAv2sgp9jPzQ126fuWGgbmj7LmvGtqY6-2zjmP4Dudh3bddkvg-p8hTCVLUH11AWqTkkzE3gJTvzbh_p6vddsvfHh7fVmm9en55X9xteSYSBa2UqoBqVRO-1QarAlEq7slQphCPcCu2TYouEGj1CburCG2W0U1TrfMlu5r7H0H-MFAe768fQpZFWlgoKFFJDUslZVU1Hpr3tMaSdw5cVYCff7OybTb7ZH9-sSVA-Q_E4HUnhr_U_1Dek-nC3</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Wenjing</creator><creator>Hu, Mengnan</creator><creator>Tan, Quange</creator><creator>Zhou, Qianli</creator><creator>Wang, Rong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230801</creationdate><title>Cross-modal attention guided visual reasoning for referring image segmentation</title><author>Zhang, Wenjing ; Hu, Mengnan ; Tan, Quange ; Zhou, Qianli ; Wang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-549c0ed7427ff597ec09845a8848841ae7b15f0edb7e757f7039d6f9495a4ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Image segmentation</topic><topic>Keywords</topic><topic>Language</topic><topic>Linguistics</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Hu, Mengnan</creatorcontrib><creatorcontrib>Tan, Quange</creatorcontrib><creatorcontrib>Zhou, Qianli</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenjing</au><au>Hu, Mengnan</au><au>Tan, Quange</au><au>Zhou, Qianli</au><au>Wang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-modal attention guided visual reasoning for referring image segmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>82</volume><issue>19</issue><spage>28853</spage><epage>28872</epage><pages>28853-28872</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The goal of referring image segmentation (RIS) is to generate the foreground mask of the object described by a natural language expression. The key of RIS is to learn the valid multimodal features between visual and linguistic modalities to identify the referred object accurately. In this paper, a cross-modal attention-guided visual reasoning model for referring segmentation is proposed. First, the multi-scale detailed information is captured by a pyramidal convolution module to enhance visual representation. Then, the entity words of the referring expression and relevant image regions are aligned by a cross-modal attention mechanism. Based on this, all the entities described by the expression can be identified. Finally, a fully connected multimodal graph is constructed with multimodal features and relationship cues of expressions. Visual reasoning is performed stepwisely on the graph to highlight the correct entity whiling suppressing other irrelevant ones. The experiment results on four benchmark datasets show that the proposed method achieves performance improvement (e.g., +1.13% on UNC, +3.06% on UNC+, +2.1% on G-Ref, and 1.11% on ReferIt). Also, the effectiveness and feasibility of each component of our method are verified by extensive ablation studies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-14586-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2023-08, Vol.82 (19), p.28853-28872 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2840671250 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ablation Computer Communication Networks Computer Science Data Structures and Information Theory Image segmentation Keywords Language Linguistics Methods Multimedia Multimedia Information Systems Natural language Neural networks Reasoning Semantics Special Purpose and Application-Based Systems |
title | Cross-modal attention guided visual reasoning for referring image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-modal%20attention%20guided%20visual%20reasoning%20for%20referring%20image%20segmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhang,%20Wenjing&rft.date=2023-08-01&rft.volume=82&rft.issue=19&rft.spage=28853&rft.epage=28872&rft.pages=28853-28872&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-14586-9&rft_dat=%3Cproquest_cross%3E2840671250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840671250&rft_id=info:pmid/&rfr_iscdi=true |