Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems

Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical Engineering 2023-06, Vol.74 (3), p.167-176
Hauptverfasser: Hassan, Hassan A., Mohamed, Mohamed A., Essai, Mohamed H., Esmaiel, Hamada, Mubarak, Ahmed S., Omer, Osama A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 3
container_start_page 167
container_title Journal of Electrical Engineering
container_volume 74
creator Hassan, Hassan A.
Mohamed, Mohamed A.
Essai, Mohamed H.
Esmaiel, Hamada
Mubarak, Ahmed S.
Omer, Osama A.
description Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.
doi_str_mv 10.2478/jee-2023-0022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2840616612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840616612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d096ee3ffba44a457440290b9c64bd885b63fdfadb05e3e2ae803020fb191693</originalsourceid><addsrcrecordid>eNptUE1LAzEUDKJg0R69Bzyvvnxsuosnqa0KlV4UvIXs5qVu2e7WJLX035ulgh48veExM8wMIVcMbricFLdrxIwDFxkA5ydkxIQoMwHl--kffE7GIawBgMmSS1AjgjPnsI7NF1KLuKUtGt813SqrTEBL6w_TddjSEE1EiiE2GxObvqOmszQ0q860SRcHh_R0vafL-cML3TceWwyBhkOIuAmX5MyZNuD4516Qt_nsdfqULZaPz9P7RVaLXMWssFAqROFcZaQ0Mp9ICbyEqqyVrGxR5JUSzjpjK8hRIDdYgAAOrmIlU6W4INdH363vP3cprl73O59CBs2L1JcpxXhiZUdW7fsQPDq99amXP2gGehhTpzH1MKYexkz8uyN_b9qI3uLK7w4J_Jr_q5tIwdREfAPES3vG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840616612</pqid></control><display><type>article</type><title>Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems</title><source>Walter De Gruyter: Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hassan, Hassan A. ; Mohamed, Mohamed A. ; Essai, Mohamed H. ; Esmaiel, Hamada ; Mubarak, Ahmed S. ; Omer, Osama A.</creator><creatorcontrib>Hassan, Hassan A. ; Mohamed, Mohamed A. ; Essai, Mohamed H. ; Esmaiel, Hamada ; Mubarak, Ahmed S. ; Omer, Osama A.</creatorcontrib><description>Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.</description><identifier>ISSN: 1339-309X</identifier><identifier>ISSN: 1335-3632</identifier><identifier>EISSN: 1339-309X</identifier><identifier>DOI: 10.2478/jee-2023-0022</identifier><language>eng</language><publisher>Bratislava: Sciendo</publisher><subject>Algorithms ; channel state estimation ; Deep learning ; GRU ; Machine learning ; Neural networks ; OFDM ; Orthogonal Frequency Division Multiplexing ; Signal detection ; State estimation ; Symbols ; Wireless communication systems ; Wireless communications</subject><ispartof>Journal of Electrical Engineering, 2023-06, Vol.74 (3), p.167-176</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d096ee3ffba44a457440290b9c64bd885b63fdfadb05e3e2ae803020fb191693</citedby><cites>FETCH-LOGICAL-c356t-8d096ee3ffba44a457440290b9c64bd885b63fdfadb05e3e2ae803020fb191693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/jee-2023-0022$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/jee-2023-0022$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,76164,76165</link.rule.ids></links><search><creatorcontrib>Hassan, Hassan A.</creatorcontrib><creatorcontrib>Mohamed, Mohamed A.</creatorcontrib><creatorcontrib>Essai, Mohamed H.</creatorcontrib><creatorcontrib>Esmaiel, Hamada</creatorcontrib><creatorcontrib>Mubarak, Ahmed S.</creatorcontrib><creatorcontrib>Omer, Osama A.</creatorcontrib><title>Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems</title><title>Journal of Electrical Engineering</title><description>Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.</description><subject>Algorithms</subject><subject>channel state estimation</subject><subject>Deep learning</subject><subject>GRU</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Signal detection</subject><subject>State estimation</subject><subject>Symbols</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>1339-309X</issn><issn>1335-3632</issn><issn>1339-309X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEUDKJg0R69Bzyvvnxsuosnqa0KlV4UvIXs5qVu2e7WJLX035ulgh48veExM8wMIVcMbricFLdrxIwDFxkA5ydkxIQoMwHl--kffE7GIawBgMmSS1AjgjPnsI7NF1KLuKUtGt813SqrTEBL6w_TddjSEE1EiiE2GxObvqOmszQ0q860SRcHh_R0vafL-cML3TceWwyBhkOIuAmX5MyZNuD4516Qt_nsdfqULZaPz9P7RVaLXMWssFAqROFcZaQ0Mp9ICbyEqqyVrGxR5JUSzjpjK8hRIDdYgAAOrmIlU6W4INdH363vP3cprl73O59CBs2L1JcpxXhiZUdW7fsQPDq99amXP2gGehhTpzH1MKYexkz8uyN_b9qI3uLK7w4J_Jr_q5tIwdREfAPES3vG</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hassan, Hassan A.</creator><creator>Mohamed, Mohamed A.</creator><creator>Essai, Mohamed H.</creator><creator>Esmaiel, Hamada</creator><creator>Mubarak, Ahmed S.</creator><creator>Omer, Osama A.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230601</creationdate><title>Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems</title><author>Hassan, Hassan A. ; Mohamed, Mohamed A. ; Essai, Mohamed H. ; Esmaiel, Hamada ; Mubarak, Ahmed S. ; Omer, Osama A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d096ee3ffba44a457440290b9c64bd885b63fdfadb05e3e2ae803020fb191693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>channel state estimation</topic><topic>Deep learning</topic><topic>GRU</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Signal detection</topic><topic>State estimation</topic><topic>Symbols</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Hassan A.</creatorcontrib><creatorcontrib>Mohamed, Mohamed A.</creatorcontrib><creatorcontrib>Essai, Mohamed H.</creatorcontrib><creatorcontrib>Esmaiel, Hamada</creatorcontrib><creatorcontrib>Mubarak, Ahmed S.</creatorcontrib><creatorcontrib>Omer, Osama A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of Electrical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Hassan A.</au><au>Mohamed, Mohamed A.</au><au>Essai, Mohamed H.</au><au>Esmaiel, Hamada</au><au>Mubarak, Ahmed S.</au><au>Omer, Osama A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems</atitle><jtitle>Journal of Electrical Engineering</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><spage>167</spage><epage>176</epage><pages>167-176</pages><issn>1339-309X</issn><issn>1335-3632</issn><eissn>1339-309X</eissn><abstract>Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for CSE/SD in OFDM wireless communication systems.</abstract><cop>Bratislava</cop><pub>Sciendo</pub><doi>10.2478/jee-2023-0022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1339-309X
ispartof Journal of Electrical Engineering, 2023-06, Vol.74 (3), p.167-176
issn 1339-309X
1335-3632
1339-309X
language eng
recordid cdi_proquest_journals_2840616612
source Walter De Gruyter: Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
channel state estimation
Deep learning
GRU
Machine learning
Neural networks
OFDM
Orthogonal Frequency Division Multiplexing
Signal detection
State estimation
Symbols
Wireless communication systems
Wireless communications
title Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20deep%20learning-based%20channel%20state%20estimation%20and%20signal%20detection%20for%20OFDM%20wireless%20systems&rft.jtitle=Journal%20of%20Electrical%20Engineering&rft.au=Hassan,%20Hassan%20A.&rft.date=2023-06-01&rft.volume=74&rft.issue=3&rft.spage=167&rft.epage=176&rft.pages=167-176&rft.issn=1339-309X&rft.eissn=1339-309X&rft_id=info:doi/10.2478/jee-2023-0022&rft_dat=%3Cproquest_cross%3E2840616612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840616612&rft_id=info:pmid/&rfr_iscdi=true