Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method

Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resultin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Calcetero-Vanegas, Sebastian, Badescu, Andrei L, X Sheldon Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Calcetero-Vanegas, Sebastian
Badescu, Andrei L
X Sheldon Lin
description Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework, formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency and severity distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information, and other extensions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2840415934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840415934</sourcerecordid><originalsourceid>FETCH-proquest_journals_28404159343</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oPNBtlnULKQoMIoSOMvNLJ-Zq00H_Pg_9gE7v4X0mxGOchzQWjM2Ib20TBAFbrVkUcY9kSSvVE65o0TjVVeCUhFPn0FiEi9GFLFSr-g_cUFV1P4ot7OCs7kbTFB22kNRSdTSVZYkGztjXulyQ6UO2Fv1f52R52GfJkb6Mfg9o-7zRg-nGlbNYBCKMNlzw_9QXC4k_fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840415934</pqid></control><display><type>article</type><title>Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method</title><source>Free E- Journals</source><creator>Calcetero-Vanegas, Sebastian ; Badescu, Andrei L ; X Sheldon Lin</creator><creatorcontrib>Calcetero-Vanegas, Sebastian ; Badescu, Andrei L ; X Sheldon Lin</creatorcontrib><description>Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework, formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency and severity distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information, and other extensions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Heterogeneity ; Heuristic methods ; Policyholders ; Statistical analysis ; Statistical methods ; Stochastic models ; Weighting</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Calcetero-Vanegas, Sebastian</creatorcontrib><creatorcontrib>Badescu, Andrei L</creatorcontrib><creatorcontrib>X Sheldon Lin</creatorcontrib><title>Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method</title><title>arXiv.org</title><description>Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework, formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency and severity distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information, and other extensions.</description><subject>Heterogeneity</subject><subject>Heuristic methods</subject><subject>Policyholders</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Weighting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oPNBtlnULKQoMIoSOMvNLJ-Zq00H_Pg_9gE7v4X0mxGOchzQWjM2Ib20TBAFbrVkUcY9kSSvVE65o0TjVVeCUhFPn0FiEi9GFLFSr-g_cUFV1P4ot7OCs7kbTFB22kNRSdTSVZYkGztjXulyQ6UO2Fv1f52R52GfJkb6Mfg9o-7zRg-nGlbNYBCKMNlzw_9QXC4k_fg</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Calcetero-Vanegas, Sebastian</creator><creator>Badescu, Andrei L</creator><creator>X Sheldon Lin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240611</creationdate><title>Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method</title><author>Calcetero-Vanegas, Sebastian ; Badescu, Andrei L ; X Sheldon Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28404159343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Heterogeneity</topic><topic>Heuristic methods</topic><topic>Policyholders</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Weighting</topic><toplevel>online_resources</toplevel><creatorcontrib>Calcetero-Vanegas, Sebastian</creatorcontrib><creatorcontrib>Badescu, Andrei L</creatorcontrib><creatorcontrib>X Sheldon Lin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calcetero-Vanegas, Sebastian</au><au>Badescu, Andrei L</au><au>X Sheldon Lin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method</atitle><jtitle>arXiv.org</jtitle><date>2024-06-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Claim reserving primarily relies on macro-level models, with the Chain-Ladder method being the most widely adopted. These methods were heuristically developed without minimal statistical foundations, relying on oversimplified data assumptions and neglecting policyholder heterogeneity, often resulting in conservative reserve predictions. Micro-level reserving, utilizing stochastic modeling with granular information, can improve predictions but tends to involve less attractive and complex models for practitioners. This paper aims to strike a practical balance between aggregate and individual models by introducing a methodology that enables the Chain-Ladder method to incorporate individual information. We achieve this by proposing a novel framework, formulating the claim reserving problem within a population sampling context. We introduce a reserve estimator in a frequency and severity distribution-free manner that utilizes inverse probability weights (IPW) driven by individual information, akin to propensity scores. We demonstrate that the Chain-Ladder method emerges as a particular case of such an IPW estimator, thereby inheriting a statistically sound foundation based on population sampling theory that enables the use of granular information, and other extensions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2840415934
source Free E- Journals
subjects Heterogeneity
Heuristic methods
Policyholders
Statistical analysis
Statistical methods
Stochastic models
Weighting
title Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Claim%20Reserving%20via%20Inverse%20Probability%20Weighting:%20A%20Micro-Level%20Chain-Ladder%20Method&rft.jtitle=arXiv.org&rft.au=Calcetero-Vanegas,%20Sebastian&rft.date=2024-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2840415934%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840415934&rft_id=info:pmid/&rfr_iscdi=true