Personalized Privacy Amplification via Importance Sampling
We examine the privacy-enhancing properties of importance sampling. In importance sampling, selection probabilities are heterogeneous and each selected data point is weighted by the reciprocal of its selection probability. Due to the heterogeneity of importance sampling, we express our results withi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fay, Dominik Mair, Sebastian Sjölund, Jens |
description | We examine the privacy-enhancing properties of importance sampling. In importance sampling, selection probabilities are heterogeneous and each selected data point is weighted by the reciprocal of its selection probability. Due to the heterogeneity of importance sampling, we express our results within the framework of personalized differential privacy. We first consider the general case where an arbitrary personalized differentially private mechanism is subsampled with an arbitrary importance sampling distribution and show that the resulting mechanism also satisfies personalized differential privacy. This constitutes an extension of the established privacy amplification by subsampling result to importance sampling. Then, for any fixed mechanism, we derive the sampling distribution that achieves the optimal sampling rate subject to a worst-case privacy constraint. Empirically, we evaluate the privacy, efficiency, and accuracy of importance sampling on the example of k-means clustering. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2840415923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840415923</sourcerecordid><originalsourceid>FETCH-proquest_journals_28404159233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCkgtKs7PS8zJrEpNUQgoyixLTK5UcMwtyMlMy0xOLMnMz1Moy0xU8MwtyC8qScxLTlUITgTJ5qXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKg0cXxRhYmBiaGppZAhxCnCgD-JTdG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840415923</pqid></control><display><type>article</type><title>Personalized Privacy Amplification via Importance Sampling</title><source>Freely Accessible Journals</source><creator>Fay, Dominik ; Mair, Sebastian ; Sjölund, Jens</creator><creatorcontrib>Fay, Dominik ; Mair, Sebastian ; Sjölund, Jens</creatorcontrib><description>We examine the privacy-enhancing properties of importance sampling. In importance sampling, selection probabilities are heterogeneous and each selected data point is weighted by the reciprocal of its selection probability. Due to the heterogeneity of importance sampling, we express our results within the framework of personalized differential privacy. We first consider the general case where an arbitrary personalized differentially private mechanism is subsampled with an arbitrary importance sampling distribution and show that the resulting mechanism also satisfies personalized differential privacy. This constitutes an extension of the established privacy amplification by subsampling result to importance sampling. Then, for any fixed mechanism, we derive the sampling distribution that achieves the optimal sampling rate subject to a worst-case privacy constraint. Empirically, we evaluate the privacy, efficiency, and accuracy of importance sampling on the example of k-means clustering.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplification ; Cluster analysis ; Clustering ; Data points ; Importance sampling ; Privacy ; Vector quantization</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Fay, Dominik</creatorcontrib><creatorcontrib>Mair, Sebastian</creatorcontrib><creatorcontrib>Sjölund, Jens</creatorcontrib><title>Personalized Privacy Amplification via Importance Sampling</title><title>arXiv.org</title><description>We examine the privacy-enhancing properties of importance sampling. In importance sampling, selection probabilities are heterogeneous and each selected data point is weighted by the reciprocal of its selection probability. Due to the heterogeneity of importance sampling, we express our results within the framework of personalized differential privacy. We first consider the general case where an arbitrary personalized differentially private mechanism is subsampled with an arbitrary importance sampling distribution and show that the resulting mechanism also satisfies personalized differential privacy. This constitutes an extension of the established privacy amplification by subsampling result to importance sampling. Then, for any fixed mechanism, we derive the sampling distribution that achieves the optimal sampling rate subject to a worst-case privacy constraint. Empirically, we evaluate the privacy, efficiency, and accuracy of importance sampling on the example of k-means clustering.</description><subject>Amplification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data points</subject><subject>Importance sampling</subject><subject>Privacy</subject><subject>Vector quantization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCkgtKs7PS8zJrEpNUQgoyixLTK5UcMwtyMlMy0xOLMnMz1Moy0xU8MwtyC8qScxLTlUITgTJ5qXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKg0cXxRhYmBiaGppZAhxCnCgD-JTdG</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Fay, Dominik</creator><creator>Mair, Sebastian</creator><creator>Sjölund, Jens</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240215</creationdate><title>Personalized Privacy Amplification via Importance Sampling</title><author>Fay, Dominik ; Mair, Sebastian ; Sjölund, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28404159233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data points</topic><topic>Importance sampling</topic><topic>Privacy</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fay, Dominik</creatorcontrib><creatorcontrib>Mair, Sebastian</creatorcontrib><creatorcontrib>Sjölund, Jens</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fay, Dominik</au><au>Mair, Sebastian</au><au>Sjölund, Jens</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Personalized Privacy Amplification via Importance Sampling</atitle><jtitle>arXiv.org</jtitle><date>2024-02-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We examine the privacy-enhancing properties of importance sampling. In importance sampling, selection probabilities are heterogeneous and each selected data point is weighted by the reciprocal of its selection probability. Due to the heterogeneity of importance sampling, we express our results within the framework of personalized differential privacy. We first consider the general case where an arbitrary personalized differentially private mechanism is subsampled with an arbitrary importance sampling distribution and show that the resulting mechanism also satisfies personalized differential privacy. This constitutes an extension of the established privacy amplification by subsampling result to importance sampling. Then, for any fixed mechanism, we derive the sampling distribution that achieves the optimal sampling rate subject to a worst-case privacy constraint. Empirically, we evaluate the privacy, efficiency, and accuracy of importance sampling on the example of k-means clustering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2840415923 |
source | Freely Accessible Journals |
subjects | Amplification Cluster analysis Clustering Data points Importance sampling Privacy Vector quantization |
title | Personalized Privacy Amplification via Importance Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Personalized%20Privacy%20Amplification%20via%20Importance%20Sampling&rft.jtitle=arXiv.org&rft.au=Fay,%20Dominik&rft.date=2024-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2840415923%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840415923&rft_id=info:pmid/&rfr_iscdi=true |