Stable Khovanov homology and Volume
We show the \(n\) colored Jones polynomials of a highly twisted link approach the Kauffman bracket of an \(n\) colored skein element. This is in the sense that the corresponding categorifications of the colored Jones polynomials approach the categorification of the Kauffman bracket of the skein elem...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Christine Ruey Shan Lee |
description | We show the \(n\) colored Jones polynomials of a highly twisted link approach the Kauffman bracket of an \(n\) colored skein element. This is in the sense that the corresponding categorifications of the colored Jones polynomials approach the categorification of the Kauffman bracket of the skein element in a direct limit, as the number of twisting of each twist region tends toward infinity, proving a quantum version of Thurston's hyperbolic Dehn surgery theorem implicit in Rozansky's work, and categorifying a result by Champanerkar-Kofman. In view of the volume conjecture, we compute the asymptotic growth rate of the Kauffman bracket of the limiting skein element at a root of unity and relate it to the volume of regular ideal octahedra that arise naturally from the evaluation of the colored Jones polynomials of the link. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2840074049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840074049</sourcerecordid><originalsourceid>FETCH-proquest_journals_28400740493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi5JTMpJVfDOyC9LzMsvU8jIz83PyU-vVEjMS1EIy88pzU3lYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwsTAwNzEwMTS2PiVAEAlTAuNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840074049</pqid></control><display><type>article</type><title>Stable Khovanov homology and Volume</title><source>Freely Accessible Journals</source><creator>Christine Ruey Shan Lee</creator><creatorcontrib>Christine Ruey Shan Lee</creatorcontrib><description>We show the \(n\) colored Jones polynomials of a highly twisted link approach the Kauffman bracket of an \(n\) colored skein element. This is in the sense that the corresponding categorifications of the colored Jones polynomials approach the categorification of the Kauffman bracket of the skein element in a direct limit, as the number of twisting of each twist region tends toward infinity, proving a quantum version of Thurston's hyperbolic Dehn surgery theorem implicit in Rozansky's work, and categorifying a result by Champanerkar-Kofman. In view of the volume conjecture, we compute the asymptotic growth rate of the Kauffman bracket of the limiting skein element at a root of unity and relate it to the volume of regular ideal octahedra that arise naturally from the evaluation of the colored Jones polynomials of the link.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brackets ; Homology ; Polynomials ; Skeins</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Christine Ruey Shan Lee</creatorcontrib><title>Stable Khovanov homology and Volume</title><title>arXiv.org</title><description>We show the \(n\) colored Jones polynomials of a highly twisted link approach the Kauffman bracket of an \(n\) colored skein element. This is in the sense that the corresponding categorifications of the colored Jones polynomials approach the categorification of the Kauffman bracket of the skein element in a direct limit, as the number of twisting of each twist region tends toward infinity, proving a quantum version of Thurston's hyperbolic Dehn surgery theorem implicit in Rozansky's work, and categorifying a result by Champanerkar-Kofman. In view of the volume conjecture, we compute the asymptotic growth rate of the Kauffman bracket of the limiting skein element at a root of unity and relate it to the volume of regular ideal octahedra that arise naturally from the evaluation of the colored Jones polynomials of the link.</description><subject>Brackets</subject><subject>Homology</subject><subject>Polynomials</subject><subject>Skeins</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi5JTMpJVfDOyC9LzMsvU8jIz83PyU-vVEjMS1EIy88pzU3lYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwsTAwNzEwMTS2PiVAEAlTAuNA</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Christine Ruey Shan Lee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230719</creationdate><title>Stable Khovanov homology and Volume</title><author>Christine Ruey Shan Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28400740493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brackets</topic><topic>Homology</topic><topic>Polynomials</topic><topic>Skeins</topic><toplevel>online_resources</toplevel><creatorcontrib>Christine Ruey Shan Lee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christine Ruey Shan Lee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stable Khovanov homology and Volume</atitle><jtitle>arXiv.org</jtitle><date>2023-07-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We show the \(n\) colored Jones polynomials of a highly twisted link approach the Kauffman bracket of an \(n\) colored skein element. This is in the sense that the corresponding categorifications of the colored Jones polynomials approach the categorification of the Kauffman bracket of the skein element in a direct limit, as the number of twisting of each twist region tends toward infinity, proving a quantum version of Thurston's hyperbolic Dehn surgery theorem implicit in Rozansky's work, and categorifying a result by Champanerkar-Kofman. In view of the volume conjecture, we compute the asymptotic growth rate of the Kauffman bracket of the limiting skein element at a root of unity and relate it to the volume of regular ideal octahedra that arise naturally from the evaluation of the colored Jones polynomials of the link.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2840074049 |
source | Freely Accessible Journals |
subjects | Brackets Homology Polynomials Skeins |
title | Stable Khovanov homology and Volume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stable%20Khovanov%20homology%20and%20Volume&rft.jtitle=arXiv.org&rft.au=Christine%20Ruey%20Shan%20Lee&rft.date=2023-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2840074049%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840074049&rft_id=info:pmid/&rfr_iscdi=true |