Spinal Interneurons: Diversity and Connectivity in Motor Control
The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli....
Gespeichert in:
Veröffentlicht in: | Annual review of neuroscience 2023-07, Vol.46 (1), p.79-99 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Annual review of neuroscience |
container_volume | 46 |
creator | Sengupta, Mohini Bagnall, Martha W |
description | The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network. |
doi_str_mv | 10.1146/annurev-neuro-083122-025325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2839917003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781214701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</originalsourceid><addsrcrecordid>eNqVkUtLxDAUhYMoOo7-BSm4cVPNzaNNdeHI-ATFhQruQtpmNNJJxqQd8d-bsaOoOxchcPPdc3LvQWgX8D4Ayw6UtZ3X89TqzrsUCwqEpJhwSvgKGgBnPGVAslU0wMDyFOPscQNthvCCMS4oLdbRBs0EZxTEAI3uZsaqJrmyrfafijYcJqdmrn0w7XuibJ2MnbW6as18UTA2uXGt84tq612zhdYmqgl6e3kP0cP52f34Mr2-vbgan1ynigNvU-A1lEDZRAlaipJmSuB4OIEsJ5zpui4LTeIsSlcFozlldEK4EsB5VgkgdIiOe91ZV051Xenorho582aq_Lt0ysjfL9Y8yyc3lwBcYKAiKuwtFbx77XRo5dSESjeNstp1QZI8-sSNRXiIdv-gL67zcU-RErQoIMeYRuqopyrvQvB68v0bwHIRlVxGJT8XK_uoZB9V7N75OdB371c2ERj1wEJFNVHH6LfwL48Pq0Opvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839917003</pqid></control><display><type>article</type><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Sengupta, Mohini ; Bagnall, Martha W</creator><creatorcontrib>Sengupta, Mohini ; Bagnall, Martha W</creatorcontrib><description>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</description><identifier>ISSN: 0147-006X</identifier><identifier>ISSN: 1545-4126</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-083122-025325</identifier><identifier>PMID: 36854318</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Brain ; circuitry ; Computational neuroscience ; Electrical stimuli ; Interneurons ; Interneurons - physiology ; Locomotion ; Locomotion - physiology ; motor control ; Motor task performance ; Neural networks ; Neurons ; Spinal cord ; Spinal Cord - physiology ; ventral horn</subject><ispartof>Annual review of neuroscience, 2023-07, Vol.46 (1), p.79-99</ispartof><rights>Copyright Annual Reviews, Inc. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</citedby><cites>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-083122-025325?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-083122-025325$$EHTML$$P50$$Gannualreviews$$Hfree_for_read</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36854318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Mohini</creatorcontrib><creatorcontrib>Bagnall, Martha W</creatorcontrib><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</description><subject>Animals</subject><subject>Brain</subject><subject>circuitry</subject><subject>Computational neuroscience</subject><subject>Electrical stimuli</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>motor control</subject><subject>Motor task performance</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiology</subject><subject>ventral horn</subject><issn>0147-006X</issn><issn>1545-4126</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUtLxDAUhYMoOo7-BSm4cVPNzaNNdeHI-ATFhQruQtpmNNJJxqQd8d-bsaOoOxchcPPdc3LvQWgX8D4Ayw6UtZ3X89TqzrsUCwqEpJhwSvgKGgBnPGVAslU0wMDyFOPscQNthvCCMS4oLdbRBs0EZxTEAI3uZsaqJrmyrfafijYcJqdmrn0w7XuibJ2MnbW6as18UTA2uXGt84tq612zhdYmqgl6e3kP0cP52f34Mr2-vbgan1ynigNvU-A1lEDZRAlaipJmSuB4OIEsJ5zpui4LTeIsSlcFozlldEK4EsB5VgkgdIiOe91ZV051Xenorho582aq_Lt0ysjfL9Y8yyc3lwBcYKAiKuwtFbx77XRo5dSESjeNstp1QZI8-sSNRXiIdv-gL67zcU-RErQoIMeYRuqopyrvQvB68v0bwHIRlVxGJT8XK_uoZB9V7N75OdB371c2ERj1wEJFNVHH6LfwL48Pq0Opvg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Sengupta, Mohini</creator><creator>Bagnall, Martha W</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>ZYWBE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230710</creationdate><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><author>Sengupta, Mohini ; Bagnall, Martha W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Brain</topic><topic>circuitry</topic><topic>Computational neuroscience</topic><topic>Electrical stimuli</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>motor control</topic><topic>Motor task performance</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiology</topic><topic>ventral horn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Mohini</creatorcontrib><creatorcontrib>Bagnall, Martha W</creatorcontrib><collection>Annual Reviews Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Mohini</au><au>Bagnall, Martha W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal Interneurons: Diversity and Connectivity in Motor Control</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2023-07-10</date><risdate>2023</risdate><volume>46</volume><issue>1</issue><spage>79</spage><epage>99</epage><pages>79-99</pages><issn>0147-006X</issn><issn>1545-4126</issn><eissn>1545-4126</eissn><abstract>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>36854318</pmid><doi>10.1146/annurev-neuro-083122-025325</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0147-006X |
ispartof | Annual review of neuroscience, 2023-07, Vol.46 (1), p.79-99 |
issn | 0147-006X 1545-4126 1545-4126 |
language | eng |
recordid | cdi_proquest_journals_2839917003 |
source | Annual Reviews Complete A-Z List; MEDLINE |
subjects | Animals Brain circuitry Computational neuroscience Electrical stimuli Interneurons Interneurons - physiology Locomotion Locomotion - physiology motor control Motor task performance Neural networks Neurons Spinal cord Spinal Cord - physiology ventral horn |
title | Spinal Interneurons: Diversity and Connectivity in Motor Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20Interneurons:%20Diversity%20and%20Connectivity%20in%20Motor%20Control&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Sengupta,%20Mohini&rft.date=2023-07-10&rft.volume=46&rft.issue=1&rft.spage=79&rft.epage=99&rft.pages=79-99&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-083122-025325&rft_dat=%3Cproquest_pubme%3E2781214701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839917003&rft_id=info:pmid/36854318&rfr_iscdi=true |