Spinal Interneurons: Diversity and Connectivity in Motor Control

The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of neuroscience 2023-07, Vol.46 (1), p.79-99
Hauptverfasser: Sengupta, Mohini, Bagnall, Martha W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 79
container_title Annual review of neuroscience
container_volume 46
creator Sengupta, Mohini
Bagnall, Martha W
description The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.
doi_str_mv 10.1146/annurev-neuro-083122-025325
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2839917003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781214701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</originalsourceid><addsrcrecordid>eNqVkUtLxDAUhYMoOo7-BSm4cVPNzaNNdeHI-ATFhQruQtpmNNJJxqQd8d-bsaOoOxchcPPdc3LvQWgX8D4Ayw6UtZ3X89TqzrsUCwqEpJhwSvgKGgBnPGVAslU0wMDyFOPscQNthvCCMS4oLdbRBs0EZxTEAI3uZsaqJrmyrfafijYcJqdmrn0w7XuibJ2MnbW6as18UTA2uXGt84tq612zhdYmqgl6e3kP0cP52f34Mr2-vbgan1ynigNvU-A1lEDZRAlaipJmSuB4OIEsJ5zpui4LTeIsSlcFozlldEK4EsB5VgkgdIiOe91ZV051Xenorho582aq_Lt0ysjfL9Y8yyc3lwBcYKAiKuwtFbx77XRo5dSESjeNstp1QZI8-sSNRXiIdv-gL67zcU-RErQoIMeYRuqopyrvQvB68v0bwHIRlVxGJT8XK_uoZB9V7N75OdB371c2ERj1wEJFNVHH6LfwL48Pq0Opvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839917003</pqid></control><display><type>article</type><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Sengupta, Mohini ; Bagnall, Martha W</creator><creatorcontrib>Sengupta, Mohini ; Bagnall, Martha W</creatorcontrib><description>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</description><identifier>ISSN: 0147-006X</identifier><identifier>ISSN: 1545-4126</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-083122-025325</identifier><identifier>PMID: 36854318</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Brain ; circuitry ; Computational neuroscience ; Electrical stimuli ; Interneurons ; Interneurons - physiology ; Locomotion ; Locomotion - physiology ; motor control ; Motor task performance ; Neural networks ; Neurons ; Spinal cord ; Spinal Cord - physiology ; ventral horn</subject><ispartof>Annual review of neuroscience, 2023-07, Vol.46 (1), p.79-99</ispartof><rights>Copyright Annual Reviews, Inc. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</citedby><cites>FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-083122-025325?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-083122-025325$$EHTML$$P50$$Gannualreviews$$Hfree_for_read</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36854318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Mohini</creatorcontrib><creatorcontrib>Bagnall, Martha W</creatorcontrib><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</description><subject>Animals</subject><subject>Brain</subject><subject>circuitry</subject><subject>Computational neuroscience</subject><subject>Electrical stimuli</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>motor control</subject><subject>Motor task performance</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Spinal cord</subject><subject>Spinal Cord - physiology</subject><subject>ventral horn</subject><issn>0147-006X</issn><issn>1545-4126</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUtLxDAUhYMoOo7-BSm4cVPNzaNNdeHI-ATFhQruQtpmNNJJxqQd8d-bsaOoOxchcPPdc3LvQWgX8D4Ayw6UtZ3X89TqzrsUCwqEpJhwSvgKGgBnPGVAslU0wMDyFOPscQNthvCCMS4oLdbRBs0EZxTEAI3uZsaqJrmyrfafijYcJqdmrn0w7XuibJ2MnbW6as18UTA2uXGt84tq612zhdYmqgl6e3kP0cP52f34Mr2-vbgan1ynigNvU-A1lEDZRAlaipJmSuB4OIEsJ5zpui4LTeIsSlcFozlldEK4EsB5VgkgdIiOe91ZV051Xenorho582aq_Lt0ysjfL9Y8yyc3lwBcYKAiKuwtFbx77XRo5dSESjeNstp1QZI8-sSNRXiIdv-gL67zcU-RErQoIMeYRuqopyrvQvB68v0bwHIRlVxGJT8XK_uoZB9V7N75OdB371c2ERj1wEJFNVHH6LfwL48Pq0Opvg</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Sengupta, Mohini</creator><creator>Bagnall, Martha W</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>ZYWBE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230710</creationdate><title>Spinal Interneurons: Diversity and Connectivity in Motor Control</title><author>Sengupta, Mohini ; Bagnall, Martha W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-15d1b134fa83b8b36a806a852167254eddb9e2831aec9437343f25a81556c8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Brain</topic><topic>circuitry</topic><topic>Computational neuroscience</topic><topic>Electrical stimuli</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>motor control</topic><topic>Motor task performance</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Spinal cord</topic><topic>Spinal Cord - physiology</topic><topic>ventral horn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Mohini</creatorcontrib><creatorcontrib>Bagnall, Martha W</creatorcontrib><collection>Annual Reviews Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Mohini</au><au>Bagnall, Martha W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal Interneurons: Diversity and Connectivity in Motor Control</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2023-07-10</date><risdate>2023</risdate><volume>46</volume><issue>1</issue><spage>79</spage><epage>99</epage><pages>79-99</pages><issn>0147-006X</issn><issn>1545-4126</issn><eissn>1545-4126</eissn><abstract>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>36854318</pmid><doi>10.1146/annurev-neuro-083122-025325</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0147-006X
ispartof Annual review of neuroscience, 2023-07, Vol.46 (1), p.79-99
issn 0147-006X
1545-4126
1545-4126
language eng
recordid cdi_proquest_journals_2839917003
source Annual Reviews Complete A-Z List; MEDLINE
subjects Animals
Brain
circuitry
Computational neuroscience
Electrical stimuli
Interneurons
Interneurons - physiology
Locomotion
Locomotion - physiology
motor control
Motor task performance
Neural networks
Neurons
Spinal cord
Spinal Cord - physiology
ventral horn
title Spinal Interneurons: Diversity and Connectivity in Motor Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20Interneurons:%20Diversity%20and%20Connectivity%20in%20Motor%20Control&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Sengupta,%20Mohini&rft.date=2023-07-10&rft.volume=46&rft.issue=1&rft.spage=79&rft.epage=99&rft.pages=79-99&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-083122-025325&rft_dat=%3Cproquest_pubme%3E2781214701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839917003&rft_id=info:pmid/36854318&rfr_iscdi=true