Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection

Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile research journal 2023-08, Vol.93 (15-16), p.3459-3477
Hauptverfasser: Zhang, Hongwei, Wang, Shihao, Lu, Shuai, Yao, Le, Hu, Yibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3477
container_issue 15-16
container_start_page 3459
container_title Textile research journal
container_volume 93
creator Zhang, Hongwei
Wang, Shihao
Lu, Shuai
Yao, Le
Hu, Yibo
description Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.
doi_str_mv 10.1177/00405175221149450
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2839701944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175221149450</sage_id><sourcerecordid>2839701944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-4d6a417a1bcdcfe63005182de897c90f863d9a5d39e867eff5a2a4b36f34624f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFz2k5ms32WMRrUJRKPa8ZJOJ9sPNmqSI_96sFTyIp5lh3ucd5kXonJIJpVJeEyJISWXJGKWiFiU5QCMqRYWlFOoQjYY9HgTH6CTGNSFEKalGaDNNCbq08h2e6QS41RFsscTxVfe5WYDxXUxhZwZJ8Qjpw4dNcTmdLRc4T1eF86EwfusD7nW2Cl2mnG7DyhQWHJiUS4Jv_BQdOb2NcPZTx2h5d_t8c4_nT7OHm-kcG05ZwsJWWlCpaWuscVBxkj9TzIKqpamJUxW3tS4tr0FVEpwrNdOi5ZXjomLC8TG62Pv2wb_vIKZm7XehyycbpngtCa2FyCq6V5ngYwzgmj6s3nT4bChphkybP5lmZrJnon6BX9f_gS97ynZ2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839701944</pqid></control><display><type>article</type><title>Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection</title><source>SAGE Complete A-Z List</source><creator>Zhang, Hongwei ; Wang, Shihao ; Lu, Shuai ; Yao, Le ; Hu, Yibo</creator><creatorcontrib>Zhang, Hongwei ; Wang, Shihao ; Lu, Shuai ; Yao, Le ; Hu, Yibo</creatorcontrib><description>Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175221149450</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Coders ; Color ; Defects ; Fabrics ; Image processing ; Image reconstruction ; Image segmentation ; Inspection ; Modules ; Receptive field</subject><ispartof>Textile research journal, 2023-08, Vol.93 (15-16), p.3459-3477</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-4d6a417a1bcdcfe63005182de897c90f863d9a5d39e867eff5a2a4b36f34624f3</citedby><cites>FETCH-LOGICAL-c312t-4d6a417a1bcdcfe63005182de897c90f863d9a5d39e867eff5a2a4b36f34624f3</cites><orcidid>0000-0003-3280-2174 ; 0000-0001-6152-3559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175221149450$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175221149450$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21810,27915,27916,43612,43613</link.rule.ids></links><search><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Wang, Shihao</creatorcontrib><creatorcontrib>Lu, Shuai</creatorcontrib><creatorcontrib>Yao, Le</creatorcontrib><creatorcontrib>Hu, Yibo</creatorcontrib><title>Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection</title><title>Textile research journal</title><description>Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.</description><subject>Coders</subject><subject>Color</subject><subject>Defects</subject><subject>Fabrics</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Inspection</subject><subject>Modules</subject><subject>Receptive field</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFz2k5ms32WMRrUJRKPa8ZJOJ9sPNmqSI_96sFTyIp5lh3ucd5kXonJIJpVJeEyJISWXJGKWiFiU5QCMqRYWlFOoQjYY9HgTH6CTGNSFEKalGaDNNCbq08h2e6QS41RFsscTxVfe5WYDxXUxhZwZJ8Qjpw4dNcTmdLRc4T1eF86EwfusD7nW2Cl2mnG7DyhQWHJiUS4Jv_BQdOb2NcPZTx2h5d_t8c4_nT7OHm-kcG05ZwsJWWlCpaWuscVBxkj9TzIKqpamJUxW3tS4tr0FVEpwrNdOi5ZXjomLC8TG62Pv2wb_vIKZm7XehyycbpngtCa2FyCq6V5ngYwzgmj6s3nT4bChphkybP5lmZrJnon6BX9f_gS97ynZ2</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Zhang, Hongwei</creator><creator>Wang, Shihao</creator><creator>Lu, Shuai</creator><creator>Yao, Le</creator><creator>Hu, Yibo</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3280-2174</orcidid><orcidid>https://orcid.org/0000-0001-6152-3559</orcidid></search><sort><creationdate>202308</creationdate><title>Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection</title><author>Zhang, Hongwei ; Wang, Shihao ; Lu, Shuai ; Yao, Le ; Hu, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-4d6a417a1bcdcfe63005182de897c90f863d9a5d39e867eff5a2a4b36f34624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Color</topic><topic>Defects</topic><topic>Fabrics</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Inspection</topic><topic>Modules</topic><topic>Receptive field</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongwei</creatorcontrib><creatorcontrib>Wang, Shihao</creatorcontrib><creatorcontrib>Lu, Shuai</creatorcontrib><creatorcontrib>Yao, Le</creatorcontrib><creatorcontrib>Hu, Yibo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongwei</au><au>Wang, Shihao</au><au>Lu, Shuai</au><au>Yao, Le</au><au>Hu, Yibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection</atitle><jtitle>Textile research journal</jtitle><date>2023-08</date><risdate>2023</risdate><volume>93</volume><issue>15-16</issue><spage>3459</spage><epage>3477</epage><pages>3459-3477</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175221149450</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3280-2174</orcidid><orcidid>https://orcid.org/0000-0001-6152-3559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5175
ispartof Textile research journal, 2023-08, Vol.93 (15-16), p.3459-3477
issn 0040-5175
1746-7748
language eng
recordid cdi_proquest_journals_2839701944
source SAGE Complete A-Z List
subjects Coders
Color
Defects
Fabrics
Image processing
Image reconstruction
Image segmentation
Inspection
Modules
Receptive field
title Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-Gate-based%20U-shaped%20Reconstruction%20Network%20(AGUR-Net)%20for%20color-patterned%20fabric%20defect%20detection&rft.jtitle=Textile%20research%20journal&rft.au=Zhang,%20Hongwei&rft.date=2023-08&rft.volume=93&rft.issue=15-16&rft.spage=3459&rft.epage=3477&rft.pages=3459-3477&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175221149450&rft_dat=%3Cproquest_cross%3E2839701944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839701944&rft_id=info:pmid/&rft_sage_id=10.1177_00405175221149450&rfr_iscdi=true