Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms

Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Mo Houtti, Johnson, Isaac, Warncke-Wang, Morten, Terveen, Loren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mo Houtti
Johnson, Isaac
Warncke-Wang, Morten
Terveen, Loren
description Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, leading to reduced overall engagement with recommended items. To answer this question, we first conducted offline analyses (Study 1) on SuggestBot, a task-routing recommender system for Wikipedia, then did a three-month controlled experiment (Study 2). Our results show that presenting users with articles from underrepresented topics increased the proportion of work done on those articles without significantly reducing overall recommendation uptake. We discuss the implications of our results, including how ignoring the article discovery process can artificially narrow recommendations on peer production platforms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2839576520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839576520</sourcerecordid><originalsourceid>FETCH-proquest_journals_28395765203</originalsourceid><addsrcrecordid>eNqNil0LgjAYRkcQJOV_GHQtrK2pXUsfF12EdS9DX0Vxe22bQf--Bf2Arh7Oc86CRFyIXZLvOV-R2LmBMcbTjEspIlJe4QVWdb3paAk1ag2mAUvvb-dBO-ox3M1cAy3QeDCentXkKBp6g5DdLAbp-y-PyrdotduQZatGB_Fv12R7Oj6KSzJZfM7gfDXgbE1QFc_FQWap5Ez8V30A9n8_yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839576520</pqid></control><display><type>article</type><title>Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms</title><source>Free E- Journals</source><creator>Mo Houtti ; Johnson, Isaac ; Warncke-Wang, Morten ; Terveen, Loren</creator><creatorcontrib>Mo Houtti ; Johnson, Isaac ; Warncke-Wang, Morten ; Terveen, Loren</creatorcontrib><description>Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, leading to reduced overall engagement with recommended items. To answer this question, we first conducted offline analyses (Study 1) on SuggestBot, a task-routing recommender system for Wikipedia, then did a three-month controlled experiment (Study 2). Our results show that presenting users with articles from underrepresented topics increased the proportion of work done on those articles without significantly reducing overall recommendation uptake. We discuss the implications of our results, including how ignoring the article discovery process can artificially narrow recommendations on peer production platforms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Encyclopedias ; Platforms ; Recommender systems</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mo Houtti</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Warncke-Wang, Morten</creatorcontrib><creatorcontrib>Terveen, Loren</creatorcontrib><title>Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms</title><title>arXiv.org</title><description>Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, leading to reduced overall engagement with recommended items. To answer this question, we first conducted offline analyses (Study 1) on SuggestBot, a task-routing recommender system for Wikipedia, then did a three-month controlled experiment (Study 2). Our results show that presenting users with articles from underrepresented topics increased the proportion of work done on those articles without significantly reducing overall recommendation uptake. We discuss the implications of our results, including how ignoring the article discovery process can artificially narrow recommendations on peer production platforms.</description><subject>Encyclopedias</subject><subject>Platforms</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNil0LgjAYRkcQJOV_GHQtrK2pXUsfF12EdS9DX0Vxe22bQf--Bf2Arh7Oc86CRFyIXZLvOV-R2LmBMcbTjEspIlJe4QVWdb3paAk1ag2mAUvvb-dBO-ox3M1cAy3QeDCentXkKBp6g5DdLAbp-y-PyrdotduQZatGB_Fv12R7Oj6KSzJZfM7gfDXgbE1QFc_FQWap5Ez8V30A9n8_yw</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Mo Houtti</creator><creator>Johnson, Isaac</creator><creator>Warncke-Wang, Morten</creator><creator>Terveen, Loren</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240410</creationdate><title>Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms</title><author>Mo Houtti ; Johnson, Isaac ; Warncke-Wang, Morten ; Terveen, Loren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28395765203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Encyclopedias</topic><topic>Platforms</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Mo Houtti</creatorcontrib><creatorcontrib>Johnson, Isaac</creatorcontrib><creatorcontrib>Warncke-Wang, Morten</creatorcontrib><creatorcontrib>Terveen, Loren</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mo Houtti</au><au>Johnson, Isaac</au><au>Warncke-Wang, Morten</au><au>Terveen, Loren</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms</atitle><jtitle>arXiv.org</jtitle><date>2024-04-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, leading to reduced overall engagement with recommended items. To answer this question, we first conducted offline analyses (Study 1) on SuggestBot, a task-routing recommender system for Wikipedia, then did a three-month controlled experiment (Study 2). Our results show that presenting users with articles from underrepresented topics increased the proportion of work done on those articles without significantly reducing overall recommendation uptake. We discuss the implications of our results, including how ignoring the article discovery process can artificially narrow recommendations on peer production platforms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2839576520
source Free E- Journals
subjects Encyclopedias
Platforms
Recommender systems
title Leveraging Recommender Systems to Reduce Content Gaps on Peer Production Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20Recommender%20Systems%20to%20Reduce%20Content%20Gaps%20on%20Peer%20Production%20Platforms&rft.jtitle=arXiv.org&rft.au=Mo%20Houtti&rft.date=2024-04-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2839576520%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839576520&rft_id=info:pmid/&rfr_iscdi=true