Driving the Technology Value Stream by Analyzing App Reviews
An emerging feature of mobile application software is the need to quickly produce new versions to solve problems that emerged in previous versions. This helps adapt to changing user needs and preferences. In a continuous software development process, the user reviews collected by the apps themselves...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 2023-07, Vol.49 (7), p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on software engineering |
container_volume | 49 |
creator | Das, Souvick Deb, Novarun Chaki, Nabendu Cortesi, Agostino |
description | An emerging feature of mobile application software is the need to quickly produce new versions to solve problems that emerged in previous versions. This helps adapt to changing user needs and preferences. In a continuous software development process, the user reviews collected by the apps themselves can play a crucial role to detect which components need to be reworked. This paper proposes a novel framework that enables software companies to drive their technology value stream based on the feedback (or reviews) provided by the end-users of an application. The proposed end-to-end framework exploits different Natural Language Processing (NLP) tasks to best understand the needs and goals of the end users. We also provide a thorough and in-depth analysis of the framework, the performance of each of the modules, and the overall contribution in driving the technology value stream. An analysis of reviews with sixteen popular Android Play Store applications from various genres over a long period of time provides encouraging evidence of the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/TSE.2023.3270708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2839528062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10109144</ieee_id><sourcerecordid>2839528062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-24113f7a4cda083796acd513909f6bcaaf54e3b4408c10c94ecc6fd82c7829343</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGExHdu3DRxHXxzqszk7ghiI-ExETQ7WQYbqGk0DpTMPXXWwILV2fznZOTj5BbCgNKwTzMpuMBA8YHnClQoM9IjxpuUi4ZnJMegNGplNpckqsY1wAglZI98vgUin2xXSbNCpMZ-tW2Kqtlm3y5cofJtAnoNsm8TYZbV7a_B3BY18kH7gv8idfkIndlxJtT9snn83g2ek0n7y9vo-Ek9UyrJmWCUp4rJ_zCgebKZM4vJOUGTJ7NvXO5FMjnQoD2FLwR6H2WLzTzSjPDBe-T--NuHarvHcbGrqtd6B5FyzQ3kmnIWEfBkfKhijFgbutQbFxoLQV7cGQ7R_bgyJ4cdZW7Y6VAxH94B1Mh-B_zEWFJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839528062</pqid></control><display><type>article</type><title>Driving the Technology Value Stream by Analyzing App Reviews</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Das, Souvick ; Deb, Novarun ; Chaki, Nabendu ; Cortesi, Agostino</creator><creatorcontrib>Das, Souvick ; Deb, Novarun ; Chaki, Nabendu ; Cortesi, Agostino</creatorcontrib><description>An emerging feature of mobile application software is the need to quickly produce new versions to solve problems that emerged in previous versions. This helps adapt to changing user needs and preferences. In a continuous software development process, the user reviews collected by the apps themselves can play a crucial role to detect which components need to be reworked. This paper proposes a novel framework that enables software companies to drive their technology value stream based on the feedback (or reviews) provided by the end-users of an application. The proposed end-to-end framework exploits different Natural Language Processing (NLP) tasks to best understand the needs and goals of the end users. We also provide a thorough and in-depth analysis of the framework, the performance of each of the modules, and the overall contribution in driving the technology value stream. An analysis of reviews with sixteen popular Android Play Store applications from various genres over a long period of time provides encouraging evidence of the effectiveness of the proposed approach.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2023.3270708</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>App Reviews ; Applications programs ; Computer bugs ; Continuous Software Development ; End users ; Feature extraction ; Mobile computing ; Natural language processing ; NLP ; Sentiment analysis ; Software ; Software development ; Task analysis ; Technology Value Stream ; Text categorization ; Training ; User needs ; Visualization</subject><ispartof>IEEE transactions on software engineering, 2023-07, Vol.49 (7), p.1-20</ispartof><rights>Copyright IEEE Computer Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-24113f7a4cda083796acd513909f6bcaaf54e3b4408c10c94ecc6fd82c7829343</cites><orcidid>0000-0003-3680-3625 ; 0000-0002-3314-2537 ; 0000-0003-3242-680X ; 0000-0002-0946-5440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10109144$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Das, Souvick</creatorcontrib><creatorcontrib>Deb, Novarun</creatorcontrib><creatorcontrib>Chaki, Nabendu</creatorcontrib><creatorcontrib>Cortesi, Agostino</creatorcontrib><title>Driving the Technology Value Stream by Analyzing App Reviews</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>An emerging feature of mobile application software is the need to quickly produce new versions to solve problems that emerged in previous versions. This helps adapt to changing user needs and preferences. In a continuous software development process, the user reviews collected by the apps themselves can play a crucial role to detect which components need to be reworked. This paper proposes a novel framework that enables software companies to drive their technology value stream based on the feedback (or reviews) provided by the end-users of an application. The proposed end-to-end framework exploits different Natural Language Processing (NLP) tasks to best understand the needs and goals of the end users. We also provide a thorough and in-depth analysis of the framework, the performance of each of the modules, and the overall contribution in driving the technology value stream. An analysis of reviews with sixteen popular Android Play Store applications from various genres over a long period of time provides encouraging evidence of the effectiveness of the proposed approach.</description><subject>App Reviews</subject><subject>Applications programs</subject><subject>Computer bugs</subject><subject>Continuous Software Development</subject><subject>End users</subject><subject>Feature extraction</subject><subject>Mobile computing</subject><subject>Natural language processing</subject><subject>NLP</subject><subject>Sentiment analysis</subject><subject>Software</subject><subject>Software development</subject><subject>Task analysis</subject><subject>Technology Value Stream</subject><subject>Text categorization</subject><subject>Training</subject><subject>User needs</subject><subject>Visualization</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtPwkAUhSdGExHdu3DRxHXxzqszk7ghiI-ExETQ7WQYbqGk0DpTMPXXWwILV2fznZOTj5BbCgNKwTzMpuMBA8YHnClQoM9IjxpuUi4ZnJMegNGplNpckqsY1wAglZI98vgUin2xXSbNCpMZ-tW2Kqtlm3y5cofJtAnoNsm8TYZbV7a_B3BY18kH7gv8idfkIndlxJtT9snn83g2ek0n7y9vo-Ek9UyrJmWCUp4rJ_zCgebKZM4vJOUGTJ7NvXO5FMjnQoD2FLwR6H2WLzTzSjPDBe-T--NuHarvHcbGrqtd6B5FyzQ3kmnIWEfBkfKhijFgbutQbFxoLQV7cGQ7R_bgyJ4cdZW7Y6VAxH94B1Mh-B_zEWFJ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Das, Souvick</creator><creator>Deb, Novarun</creator><creator>Chaki, Nabendu</creator><creator>Cortesi, Agostino</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-3680-3625</orcidid><orcidid>https://orcid.org/0000-0002-3314-2537</orcidid><orcidid>https://orcid.org/0000-0003-3242-680X</orcidid><orcidid>https://orcid.org/0000-0002-0946-5440</orcidid></search><sort><creationdate>20230701</creationdate><title>Driving the Technology Value Stream by Analyzing App Reviews</title><author>Das, Souvick ; Deb, Novarun ; Chaki, Nabendu ; Cortesi, Agostino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-24113f7a4cda083796acd513909f6bcaaf54e3b4408c10c94ecc6fd82c7829343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>App Reviews</topic><topic>Applications programs</topic><topic>Computer bugs</topic><topic>Continuous Software Development</topic><topic>End users</topic><topic>Feature extraction</topic><topic>Mobile computing</topic><topic>Natural language processing</topic><topic>NLP</topic><topic>Sentiment analysis</topic><topic>Software</topic><topic>Software development</topic><topic>Task analysis</topic><topic>Technology Value Stream</topic><topic>Text categorization</topic><topic>Training</topic><topic>User needs</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Souvick</creatorcontrib><creatorcontrib>Deb, Novarun</creatorcontrib><creatorcontrib>Chaki, Nabendu</creatorcontrib><creatorcontrib>Cortesi, Agostino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Souvick</au><au>Deb, Novarun</au><au>Chaki, Nabendu</au><au>Cortesi, Agostino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving the Technology Value Stream by Analyzing App Reviews</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>49</volume><issue>7</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>An emerging feature of mobile application software is the need to quickly produce new versions to solve problems that emerged in previous versions. This helps adapt to changing user needs and preferences. In a continuous software development process, the user reviews collected by the apps themselves can play a crucial role to detect which components need to be reworked. This paper proposes a novel framework that enables software companies to drive their technology value stream based on the feedback (or reviews) provided by the end-users of an application. The proposed end-to-end framework exploits different Natural Language Processing (NLP) tasks to best understand the needs and goals of the end users. We also provide a thorough and in-depth analysis of the framework, the performance of each of the modules, and the overall contribution in driving the technology value stream. An analysis of reviews with sixteen popular Android Play Store applications from various genres over a long period of time provides encouraging evidence of the effectiveness of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2023.3270708</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3680-3625</orcidid><orcidid>https://orcid.org/0000-0002-3314-2537</orcidid><orcidid>https://orcid.org/0000-0003-3242-680X</orcidid><orcidid>https://orcid.org/0000-0002-0946-5440</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2023-07, Vol.49 (7), p.1-20 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_proquest_journals_2839528062 |
source | IEEE/IET Electronic Library (IEL) |
subjects | App Reviews Applications programs Computer bugs Continuous Software Development End users Feature extraction Mobile computing Natural language processing NLP Sentiment analysis Software Software development Task analysis Technology Value Stream Text categorization Training User needs Visualization |
title | Driving the Technology Value Stream by Analyzing App Reviews |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20the%20Technology%20Value%20Stream%20by%20Analyzing%20App%20Reviews&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Das,%20Souvick&rft.date=2023-07-01&rft.volume=49&rft.issue=7&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2023.3270708&rft_dat=%3Cproquest_ieee_%3E2839528062%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839528062&rft_id=info:pmid/&rft_ieee_id=10109144&rfr_iscdi=true |