High-dimensional order-free multivariate spatial disease mapping
Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2023-10, Vol.33 (5), Article 104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Statistics and computing |
container_volume | 33 |
creator | Vicente, Gonzalo Adin, Aritz Goicoa, Tomás Ugarte, María Dolores |
description | Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas. |
doi_str_mv | 10.1007/s11222-023-10263-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2839384134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839384134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPBc3SSyX7dlKJWKHjRc5huZmtKu7smW6n_3ugK3jy9DO8HwyPEpYJrBVDcRKW01hI0SgU6R3k4EhOVFenEIjsWE6hykKgKcyrOYtwAKJWjmYjbhV-_Sed33EbftbSddcFxkE1gnu3228F_UPA08Cz2NPjkOx-ZYjKp7327PhcnDW0jX_zqVLw-3L_MF3L5_Pg0v1vKGnMcJBdsyqohQ46SZlwbU2VN0dBKu5Kp0sZABauqJHI1mJXJ2KEyTiHk2jmciqtxtw_d-57jYDfdPqSHo9UlVlgahSal9JiqQxdj4Mb2we8ofFoF9puUHUnZRMr-kLKHVMKxFFO4XXP4m_6n9QU-y2zY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839384134</pqid></control><display><type>article</type><title>High-dimensional order-free multivariate spatial disease mapping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</creator><creatorcontrib>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</creatorcontrib><description>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-023-10263-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Mapping ; Mortality ; Multivariate analysis ; Original Paper ; Probability and Statistics in Computer Science ; Spatial data ; Statistical inference ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2023-10, Vol.33 (5), Article 104</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</citedby><cites>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-023-10263-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-023-10263-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vicente, Gonzalo</creatorcontrib><creatorcontrib>Adin, Aritz</creatorcontrib><creatorcontrib>Goicoa, Tomás</creatorcontrib><creatorcontrib>Ugarte, María Dolores</creatorcontrib><title>High-dimensional order-free multivariate spatial disease mapping</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Mapping</subject><subject>Mortality</subject><subject>Multivariate analysis</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Spatial data</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPBc3SSyX7dlKJWKHjRc5huZmtKu7smW6n_3ugK3jy9DO8HwyPEpYJrBVDcRKW01hI0SgU6R3k4EhOVFenEIjsWE6hykKgKcyrOYtwAKJWjmYjbhV-_Sed33EbftbSddcFxkE1gnu3228F_UPA08Cz2NPjkOx-ZYjKp7327PhcnDW0jX_zqVLw-3L_MF3L5_Pg0v1vKGnMcJBdsyqohQ46SZlwbU2VN0dBKu5Kp0sZABauqJHI1mJXJ2KEyTiHk2jmciqtxtw_d-57jYDfdPqSHo9UlVlgahSal9JiqQxdj4Mb2we8ofFoF9puUHUnZRMr-kLKHVMKxFFO4XXP4m_6n9QU-y2zY</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Vicente, Gonzalo</creator><creator>Adin, Aritz</creator><creator>Goicoa, Tomás</creator><creator>Ugarte, María Dolores</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>High-dimensional order-free multivariate spatial disease mapping</title><author>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Mapping</topic><topic>Mortality</topic><topic>Multivariate analysis</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Spatial data</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicente, Gonzalo</creatorcontrib><creatorcontrib>Adin, Aritz</creatorcontrib><creatorcontrib>Goicoa, Tomás</creatorcontrib><creatorcontrib>Ugarte, María Dolores</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicente, Gonzalo</au><au>Adin, Aritz</au><au>Goicoa, Tomás</au><au>Ugarte, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-dimensional order-free multivariate spatial disease mapping</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><artnum>104</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-023-10263-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2023-10, Vol.33 (5), Article 104 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2839384134 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Computer Science Mapping Mortality Multivariate analysis Original Paper Probability and Statistics in Computer Science Spatial data Statistical inference Statistical Theory and Methods Statistics and Computing/Statistics Programs |
title | High-dimensional order-free multivariate spatial disease mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-dimensional%20order-free%20multivariate%20spatial%20disease%20mapping&rft.jtitle=Statistics%20and%20computing&rft.au=Vicente,%20Gonzalo&rft.date=2023-10-01&rft.volume=33&rft.issue=5&rft.artnum=104&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-023-10263-x&rft_dat=%3Cproquest_cross%3E2839384134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839384134&rft_id=info:pmid/&rfr_iscdi=true |