High-dimensional order-free multivariate spatial disease mapping

Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2023-10, Vol.33 (5), Article 104
Hauptverfasser: Vicente, Gonzalo, Adin, Aritz, Goicoa, Tomás, Ugarte, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Statistics and computing
container_volume 33
creator Vicente, Gonzalo
Adin, Aritz
Goicoa, Tomás
Ugarte, María Dolores
description Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.
doi_str_mv 10.1007/s11222-023-10263-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2839384134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839384134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPBc3SSyX7dlKJWKHjRc5huZmtKu7smW6n_3ugK3jy9DO8HwyPEpYJrBVDcRKW01hI0SgU6R3k4EhOVFenEIjsWE6hykKgKcyrOYtwAKJWjmYjbhV-_Sed33EbftbSddcFxkE1gnu3228F_UPA08Cz2NPjkOx-ZYjKp7327PhcnDW0jX_zqVLw-3L_MF3L5_Pg0v1vKGnMcJBdsyqohQ46SZlwbU2VN0dBKu5Kp0sZABauqJHI1mJXJ2KEyTiHk2jmciqtxtw_d-57jYDfdPqSHo9UlVlgahSal9JiqQxdj4Mb2we8ofFoF9puUHUnZRMr-kLKHVMKxFFO4XXP4m_6n9QU-y2zY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839384134</pqid></control><display><type>article</type><title>High-dimensional order-free multivariate spatial disease mapping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</creator><creatorcontrib>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</creatorcontrib><description>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-023-10263-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Mapping ; Mortality ; Multivariate analysis ; Original Paper ; Probability and Statistics in Computer Science ; Spatial data ; Statistical inference ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2023-10, Vol.33 (5), Article 104</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</citedby><cites>FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-023-10263-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-023-10263-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vicente, Gonzalo</creatorcontrib><creatorcontrib>Adin, Aritz</creatorcontrib><creatorcontrib>Goicoa, Tomás</creatorcontrib><creatorcontrib>Ugarte, María Dolores</creatorcontrib><title>High-dimensional order-free multivariate spatial disease mapping</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Mapping</subject><subject>Mortality</subject><subject>Multivariate analysis</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Spatial data</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPBc3SSyX7dlKJWKHjRc5huZmtKu7smW6n_3ugK3jy9DO8HwyPEpYJrBVDcRKW01hI0SgU6R3k4EhOVFenEIjsWE6hykKgKcyrOYtwAKJWjmYjbhV-_Sed33EbftbSddcFxkE1gnu3228F_UPA08Cz2NPjkOx-ZYjKp7327PhcnDW0jX_zqVLw-3L_MF3L5_Pg0v1vKGnMcJBdsyqohQ46SZlwbU2VN0dBKu5Kp0sZABauqJHI1mJXJ2KEyTiHk2jmciqtxtw_d-57jYDfdPqSHo9UlVlgahSal9JiqQxdj4Mb2we8ofFoF9puUHUnZRMr-kLKHVMKxFFO4XXP4m_6n9QU-y2zY</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Vicente, Gonzalo</creator><creator>Adin, Aritz</creator><creator>Goicoa, Tomás</creator><creator>Ugarte, María Dolores</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>High-dimensional order-free multivariate spatial disease mapping</title><author>Vicente, Gonzalo ; Adin, Aritz ; Goicoa, Tomás ; Ugarte, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e7e489fa4ada89f5ec4495f7fab2d8ea9244090b98aadc04b45ed314d13062dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Mapping</topic><topic>Mortality</topic><topic>Multivariate analysis</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Spatial data</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicente, Gonzalo</creatorcontrib><creatorcontrib>Adin, Aritz</creatorcontrib><creatorcontrib>Goicoa, Tomás</creatorcontrib><creatorcontrib>Ugarte, María Dolores</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicente, Gonzalo</au><au>Adin, Aritz</au><au>Goicoa, Tomás</au><au>Ugarte, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-dimensional order-free multivariate spatial disease mapping</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><artnum>104</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-023-10263-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2023-10, Vol.33 (5), Article 104
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2839384134
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Computer Science
Mapping
Mortality
Multivariate analysis
Original Paper
Probability and Statistics in Computer Science
Spatial data
Statistical inference
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
title High-dimensional order-free multivariate spatial disease mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-dimensional%20order-free%20multivariate%20spatial%20disease%20mapping&rft.jtitle=Statistics%20and%20computing&rft.au=Vicente,%20Gonzalo&rft.date=2023-10-01&rft.volume=33&rft.issue=5&rft.artnum=104&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-023-10263-x&rft_dat=%3Cproquest_cross%3E2839384134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839384134&rft_id=info:pmid/&rfr_iscdi=true