Rational design and combinatorial chemistry of ionizable lipids for RNA delivery
In 2018, LNPs enabled the first FDA approval of a siRNA drug (Onpattro); two years later, two SARS-CoV-2 vaccines (Comirnaty, Spikevax) based on LNPs containing mRNA also arrived at the clinic, saving millions of lives during the COVID-19 pandemic. Notably, each of the three FDA-approved LNP formula...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-07, Vol.11 (28), p.6527-6539 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6539 |
---|---|
container_issue | 28 |
container_start_page | 6527 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 11 |
creator | Xu, Yue Golubovic, Alex Xu, Shufen Pan, Anni Li, Bowen |
description | In 2018, LNPs enabled the first FDA approval of a siRNA drug (Onpattro); two years later, two SARS-CoV-2 vaccines (Comirnaty, Spikevax) based on LNPs containing mRNA also arrived at the clinic, saving millions of lives during the COVID-19 pandemic. Notably, each of the three FDA-approved LNP formulations uses a unique ionizable lipid while the other three components,
i.e.
, cholesterol, helper lipid, and PEGylated lipid, are almost identical. Therefore, ionizable lipids are critical to the delivery efficiency of mRNA. This review covers recent advances in ionizable lipids used in RNA delivery over the past several decades. We will discuss chemical structures, synthetic routes, and structure-activity relationships of ionizable lipids.
This review will delve into the crucial role of ionizable lipids in the development of lipid nanoparticles (LNPs) for efficient RNA delivery. |
doi_str_mv | 10.1039/d3tb00649b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2839256764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839256764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-187aa91cfcd458ec2c6d9faaf615f877149ab60945dae9f909fb44ab9bbb65c43</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4Mobsy9-K4UfBGhmjRJ2zxu8ycMlTHBt5KkiWa0zUxaYf71Zm5O8F7u4D735e57ABwjeIkgZlclbgWEKWFiD_QTSGGcUZTv72r42gND7xcwRI7SHJND0MMZJpRg2AfPM94a2_AqKpU3b03EmzKStham4a11JjTku6qNb90qsjoKrPniolJRZZam9JG2Lpo9jsJ4ZT6VWx2BA80rr4bbPAAvtzfzyX08fbp7mIymscQ4a2OUZ5wzJLUsCc2VTGRaMs25ThHVeZYhwrhIISO05IppBpkWhHDBhBAplQQPwPlGd-nsR6d8W4Qlpaoq3ijb-SLJkyCDUUYDevYPXdjOhZvXFGYJTbN0LXixoaSz3juli6UzNXerAsFibXVxjefjH6vHAT7dSnaiVuUO_TU2ACcbwHm56_79Cn8DwRGC4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839256764</pqid></control><display><type>article</type><title>Rational design and combinatorial chemistry of ionizable lipids for RNA delivery</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Yue ; Golubovic, Alex ; Xu, Shufen ; Pan, Anni ; Li, Bowen</creator><creatorcontrib>Xu, Yue ; Golubovic, Alex ; Xu, Shufen ; Pan, Anni ; Li, Bowen</creatorcontrib><description>In 2018, LNPs enabled the first FDA approval of a siRNA drug (Onpattro); two years later, two SARS-CoV-2 vaccines (Comirnaty, Spikevax) based on LNPs containing mRNA also arrived at the clinic, saving millions of lives during the COVID-19 pandemic. Notably, each of the three FDA-approved LNP formulations uses a unique ionizable lipid while the other three components,
i.e.
, cholesterol, helper lipid, and PEGylated lipid, are almost identical. Therefore, ionizable lipids are critical to the delivery efficiency of mRNA. This review covers recent advances in ionizable lipids used in RNA delivery over the past several decades. We will discuss chemical structures, synthetic routes, and structure-activity relationships of ionizable lipids.
This review will delve into the crucial role of ionizable lipids in the development of lipid nanoparticles (LNPs) for efficient RNA delivery.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d3tb00649b</identifier><identifier>PMID: 37345430</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cholesterol ; Combinatorial analysis ; Combinatorial chemistry ; COVID-19 ; COVID-19 Vaccines ; Humans ; Lipids ; Lipids - chemistry ; mRNA ; Nanoparticles - chemistry ; Pandemics ; RNA, Messenger - genetics ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; siRNA ; Vaccines</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-07, Vol.11 (28), p.6527-6539</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-187aa91cfcd458ec2c6d9faaf615f877149ab60945dae9f909fb44ab9bbb65c43</citedby><cites>FETCH-LOGICAL-c337t-187aa91cfcd458ec2c6d9faaf615f877149ab60945dae9f909fb44ab9bbb65c43</cites><orcidid>0000-0001-5006-9143 ; 0000-0002-7695-1115 ; 0000-0001-7672-9170 ; 0009-0003-1557-6694 ; 0000-0001-5151-5686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37345430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Golubovic, Alex</creatorcontrib><creatorcontrib>Xu, Shufen</creatorcontrib><creatorcontrib>Pan, Anni</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><title>Rational design and combinatorial chemistry of ionizable lipids for RNA delivery</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>In 2018, LNPs enabled the first FDA approval of a siRNA drug (Onpattro); two years later, two SARS-CoV-2 vaccines (Comirnaty, Spikevax) based on LNPs containing mRNA also arrived at the clinic, saving millions of lives during the COVID-19 pandemic. Notably, each of the three FDA-approved LNP formulations uses a unique ionizable lipid while the other three components,
i.e.
, cholesterol, helper lipid, and PEGylated lipid, are almost identical. Therefore, ionizable lipids are critical to the delivery efficiency of mRNA. This review covers recent advances in ionizable lipids used in RNA delivery over the past several decades. We will discuss chemical structures, synthetic routes, and structure-activity relationships of ionizable lipids.
This review will delve into the crucial role of ionizable lipids in the development of lipid nanoparticles (LNPs) for efficient RNA delivery.</description><subject>Cholesterol</subject><subject>Combinatorial analysis</subject><subject>Combinatorial chemistry</subject><subject>COVID-19</subject><subject>COVID-19 Vaccines</subject><subject>Humans</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>mRNA</subject><subject>Nanoparticles - chemistry</subject><subject>Pandemics</subject><subject>RNA, Messenger - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>siRNA</subject><subject>Vaccines</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9LwzAQx4Mobsy9-K4UfBGhmjRJ2zxu8ycMlTHBt5KkiWa0zUxaYf71Zm5O8F7u4D735e57ABwjeIkgZlclbgWEKWFiD_QTSGGcUZTv72r42gND7xcwRI7SHJND0MMZJpRg2AfPM94a2_AqKpU3b03EmzKStham4a11JjTku6qNb90qsjoKrPniolJRZZam9JG2Lpo9jsJ4ZT6VWx2BA80rr4bbPAAvtzfzyX08fbp7mIymscQ4a2OUZ5wzJLUsCc2VTGRaMs25ThHVeZYhwrhIISO05IppBpkWhHDBhBAplQQPwPlGd-nsR6d8W4Qlpaoq3ijb-SLJkyCDUUYDevYPXdjOhZvXFGYJTbN0LXixoaSz3juli6UzNXerAsFibXVxjefjH6vHAT7dSnaiVuUO_TU2ACcbwHm56_79Cn8DwRGC4A</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Xu, Yue</creator><creator>Golubovic, Alex</creator><creator>Xu, Shufen</creator><creator>Pan, Anni</creator><creator>Li, Bowen</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5006-9143</orcidid><orcidid>https://orcid.org/0000-0002-7695-1115</orcidid><orcidid>https://orcid.org/0000-0001-7672-9170</orcidid><orcidid>https://orcid.org/0009-0003-1557-6694</orcidid><orcidid>https://orcid.org/0000-0001-5151-5686</orcidid></search><sort><creationdate>20230719</creationdate><title>Rational design and combinatorial chemistry of ionizable lipids for RNA delivery</title><author>Xu, Yue ; Golubovic, Alex ; Xu, Shufen ; Pan, Anni ; Li, Bowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-187aa91cfcd458ec2c6d9faaf615f877149ab60945dae9f909fb44ab9bbb65c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cholesterol</topic><topic>Combinatorial analysis</topic><topic>Combinatorial chemistry</topic><topic>COVID-19</topic><topic>COVID-19 Vaccines</topic><topic>Humans</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>mRNA</topic><topic>Nanoparticles - chemistry</topic><topic>Pandemics</topic><topic>RNA, Messenger - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>siRNA</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Golubovic, Alex</creatorcontrib><creatorcontrib>Xu, Shufen</creatorcontrib><creatorcontrib>Pan, Anni</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yue</au><au>Golubovic, Alex</au><au>Xu, Shufen</au><au>Pan, Anni</au><au>Li, Bowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design and combinatorial chemistry of ionizable lipids for RNA delivery</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2023-07-19</date><risdate>2023</risdate><volume>11</volume><issue>28</issue><spage>6527</spage><epage>6539</epage><pages>6527-6539</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>In 2018, LNPs enabled the first FDA approval of a siRNA drug (Onpattro); two years later, two SARS-CoV-2 vaccines (Comirnaty, Spikevax) based on LNPs containing mRNA also arrived at the clinic, saving millions of lives during the COVID-19 pandemic. Notably, each of the three FDA-approved LNP formulations uses a unique ionizable lipid while the other three components,
i.e.
, cholesterol, helper lipid, and PEGylated lipid, are almost identical. Therefore, ionizable lipids are critical to the delivery efficiency of mRNA. This review covers recent advances in ionizable lipids used in RNA delivery over the past several decades. We will discuss chemical structures, synthetic routes, and structure-activity relationships of ionizable lipids.
This review will delve into the crucial role of ionizable lipids in the development of lipid nanoparticles (LNPs) for efficient RNA delivery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37345430</pmid><doi>10.1039/d3tb00649b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5006-9143</orcidid><orcidid>https://orcid.org/0000-0002-7695-1115</orcidid><orcidid>https://orcid.org/0000-0001-7672-9170</orcidid><orcidid>https://orcid.org/0009-0003-1557-6694</orcidid><orcidid>https://orcid.org/0000-0001-5151-5686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2023-07, Vol.11 (28), p.6527-6539 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_journals_2839256764 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Cholesterol Combinatorial analysis Combinatorial chemistry COVID-19 COVID-19 Vaccines Humans Lipids Lipids - chemistry mRNA Nanoparticles - chemistry Pandemics RNA, Messenger - genetics SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 siRNA Vaccines |
title | Rational design and combinatorial chemistry of ionizable lipids for RNA delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20and%20combinatorial%20chemistry%20of%20ionizable%20lipids%20for%20RNA%20delivery&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Xu,%20Yue&rft.date=2023-07-19&rft.volume=11&rft.issue=28&rft.spage=6527&rft.epage=6539&rft.pages=6527-6539&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d3tb00649b&rft_dat=%3Cproquest_rsc_p%3E2839256764%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839256764&rft_id=info:pmid/37345430&rfr_iscdi=true |