Chevrel Phase Mo6S8 Nanosheets Featuring Reversible Electrochemical Li‐Ion Intercalation as Effective Dynamic‐Phase Promoter for Advanced Lithium‐Sulfur Batteries

Modifying sulfur cathodes with lithium polysulfides (LiPSs) adsorptive and electrocatalytic host materials is regarded as one of the most effective approaches to address the challenging problems in lithium‐sulfur (Li‐S) batteries. However, because of the high operating voltage window of Li–S batteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-07, Vol.19 (29), p.n/a
Hauptverfasser: Xu, Jili, Wang, Heng, He, Ting, Yan, Xiao, Yu, Jia, Bi, Jingkun, Ye, Daixin, Yao, Wenli, Tang, Ya, Zhao, Hongbin, Zhang, Jiujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modifying sulfur cathodes with lithium polysulfides (LiPSs) adsorptive and electrocatalytic host materials is regarded as one of the most effective approaches to address the challenging problems in lithium‐sulfur (Li‐S) batteries. However, because of the high operating voltage window of Li–S batteries from 1.7 to 2.8 V, most of the host materials cannot participate in the sulfur redox reactions within the same potential region, which exhibit fixed or single functional property, hardly fulfilling the requirement of the complex and multiphase process. Herein, Chevrel phase Mo6S8 nanosheets with high electronic conductivity, fast ion transport capability, and strong polysulfide affinity are introduced to sulfur cathode. Unlike most previous inactive hosts with a fixed affinity or catalytic ability toward LiPSs, the reaction involving Mo6S8 is intercalative and the adsorbability for LiPSs as well as the ionic conductivity can be dynamically enhanced via reversible electrochemical lithiation of Mo6S8 to Li‐ion intercalated LixMo6S8, thereby suppressing the shuttling effect and accelerating the conversion kinetics. Consequently, the Mo6S8 nanosheets act as an effective dynamic‐phase promoter in Li–S batteries and exhibit superior cycling stability, high‐rate capability, and low‐temperature performance. This study opens a new avenue for the development of advanced hosts with dynamic regulation activity for high performance Li‐S batteries. Chevrel phase Mo6S8 nanosheets, featuring reversible electrochemical Li‐ion intercalation, act as an effective dynamic‐phase promoter in polysulfide immobilization and conversion due to their intrinsic high electronic conductivity, fast ion transport capability and strong chemical affinity.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202300042