Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance
Fe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cel...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-07, Vol.135 (30), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Han, Ali Sun, Wenming Wan, Xin Cai, Dandan Wang, Xijun Li, Feng Shui, Jianglan Wang, Dingsheng |
description | Fe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.
Constructing metal atomic clusters can effectively boost the oxygen reduction reaction (ORR) performance and stability of Fe−N4 on the N‐doped carbon (NC) substrate. The Co4@/Fe1@NC catalyst is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors and the obtained catalyst exhibits excellent ORR activity. |
doi_str_mv | 10.1002/ange.202303185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2838921751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838921751</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1185-f2709863e4bc0be0bc31ac7840d566f799942099d92b4d51d3af169db3267363</originalsourceid><addsrcrecordid>eNo9kMtOwkAUQCdGExHdup7EdXFe7XSWpPIwQTCG_WTaTqGkzOBMK_QPXPuJfolFCKubm5ycm3sAeMRogBEiz8qs9IAgQhHFcXgFejgkOKA85NeghxBjQUyYuAV33m8QQhHhogcOiTW-dk1Wl9ZAW8DEMjis7bbMYFI1vtbOw9rCkVFppeFY_37_zBl8s3VZeLgv6zWclqt11cJhp_jSUJkcvjTun14c2pU28EPnZ_-7doV1W2UyfQ9uClV5_XCefbAcj5bJNJgtJq_JcBbscPdFUBCORBxRzdIMpRqlGcUq4zFDeRhFBRdCMIKEyAVJWR7inKoCRyJPKYk4jWgfPJ20O2c_G-1rubGNM91FSWIaC4J5iDtKnKh9WelW7ly5Va6VGMljWXksKy9l5XA-GV02-gdDZW-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838921751</pqid></control><display><type>article</type><title>Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Ali ; Sun, Wenming ; Wan, Xin ; Cai, Dandan ; Wang, Xijun ; Li, Feng ; Shui, Jianglan ; Wang, Dingsheng</creator><creatorcontrib>Han, Ali ; Sun, Wenming ; Wan, Xin ; Cai, Dandan ; Wang, Xijun ; Li, Feng ; Shui, Jianglan ; Wang, Dingsheng</creatorcontrib><description>Fe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.
Constructing metal atomic clusters can effectively boost the oxygen reduction reaction (ORR) performance and stability of Fe−N4 on the N‐doped carbon (NC) substrate. The Co4@/Fe1@NC catalyst is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors and the obtained catalyst exhibits excellent ORR activity.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202303185</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic Clusters ; Carbon ; Carbon sources ; Catalysis ; Catalysts ; Chemical reduction ; Chemistry ; Configurations ; Durability ; Fuel Cell ; Fuel cells ; Fuel technology ; Molecular clusters ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Proton exchange membrane fuel cells ; Single-Atom Catalysts ; Substrates</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (30), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0074-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202303185$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202303185$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Han, Ali</creatorcontrib><creatorcontrib>Sun, Wenming</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Cai, Dandan</creatorcontrib><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><title>Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance</title><title>Angewandte Chemie</title><description>Fe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.
Constructing metal atomic clusters can effectively boost the oxygen reduction reaction (ORR) performance and stability of Fe−N4 on the N‐doped carbon (NC) substrate. The Co4@/Fe1@NC catalyst is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors and the obtained catalyst exhibits excellent ORR activity.</description><subject>Atomic Clusters</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Configurations</subject><subject>Durability</subject><subject>Fuel Cell</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Molecular clusters</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Proton exchange membrane fuel cells</subject><subject>Single-Atom Catalysts</subject><subject>Substrates</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwkAUQCdGExHdup7EdXFe7XSWpPIwQTCG_WTaTqGkzOBMK_QPXPuJfolFCKubm5ycm3sAeMRogBEiz8qs9IAgQhHFcXgFejgkOKA85NeghxBjQUyYuAV33m8QQhHhogcOiTW-dk1Wl9ZAW8DEMjis7bbMYFI1vtbOw9rCkVFppeFY_37_zBl8s3VZeLgv6zWclqt11cJhp_jSUJkcvjTun14c2pU28EPnZ_-7doV1W2UyfQ9uClV5_XCefbAcj5bJNJgtJq_JcBbscPdFUBCORBxRzdIMpRqlGcUq4zFDeRhFBRdCMIKEyAVJWR7inKoCRyJPKYk4jWgfPJ20O2c_G-1rubGNM91FSWIaC4J5iDtKnKh9WelW7ly5Va6VGMljWXksKy9l5XA-GV02-gdDZW-V</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Han, Ali</creator><creator>Sun, Wenming</creator><creator>Wan, Xin</creator><creator>Cai, Dandan</creator><creator>Wang, Xijun</creator><creator>Li, Feng</creator><creator>Shui, Jianglan</creator><creator>Wang, Dingsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid></search><sort><creationdate>20230724</creationdate><title>Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance</title><author>Han, Ali ; Sun, Wenming ; Wan, Xin ; Cai, Dandan ; Wang, Xijun ; Li, Feng ; Shui, Jianglan ; Wang, Dingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1185-f2709863e4bc0be0bc31ac7840d566f799942099d92b4d51d3af169db3267363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic Clusters</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Configurations</topic><topic>Durability</topic><topic>Fuel Cell</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Molecular clusters</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Proton exchange membrane fuel cells</topic><topic>Single-Atom Catalysts</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ali</creatorcontrib><creatorcontrib>Sun, Wenming</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Cai, Dandan</creatorcontrib><creatorcontrib>Wang, Xijun</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ali</au><au>Sun, Wenming</au><au>Wan, Xin</au><au>Cai, Dandan</au><au>Wang, Xijun</au><au>Li, Feng</au><au>Shui, Jianglan</au><au>Wang, Dingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>135</volume><issue>30</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Fe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.
Constructing metal atomic clusters can effectively boost the oxygen reduction reaction (ORR) performance and stability of Fe−N4 on the N‐doped carbon (NC) substrate. The Co4@/Fe1@NC catalyst is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors and the obtained catalyst exhibits excellent ORR activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202303185</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-07, Vol.135 (30), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2838921751 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic Clusters Carbon Carbon sources Catalysis Catalysts Chemical reduction Chemistry Configurations Durability Fuel Cell Fuel cells Fuel technology Molecular clusters Oxygen Reduction Reaction Oxygen reduction reactions Proton exchange membrane fuel cells Single-Atom Catalysts Substrates |
title | Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Co4%20Atomic%20Clusters%20to%20Enable%20Fe%E2%88%92N4%20Motifs%20with%20Highly%20Active%20and%20Durable%20Oxygen%20Reduction%20Performance&rft.jtitle=Angewandte%20Chemie&rft.au=Han,%20Ali&rft.date=2023-07-24&rft.volume=135&rft.issue=30&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202303185&rft_dat=%3Cproquest_wiley%3E2838921751%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838921751&rft_id=info:pmid/&rfr_iscdi=true |