4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole

We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Pei-Ming, Ho, Kawai, Hikaru, Liao, Henry, Yokokura, Yuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pei-Ming, Ho
Kawai, Hikaru
Liao, Henry
Yokokura, Yuki
description We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838879861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838879861</sourcerecordid><originalsourceid>FETCH-proquest_journals_28388798613</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLrRJL3FUq-jgIAqOJdRTbE0TzUXo26vgAzj9w_ePSEAZSyKeUjohobVdHMc0L2iWsYAc0hIuOEhYKt0LOYBQVyjbFxrbugF0A-6GsFcOTasNnJzxtfMGv3L0Qjnfw0qK-g47LXFGxo2QFsNfp2S-3ZzXu-hh9NOjdVWnvVEfqihnnBcLnifsv-sNBmo9Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838879861</pqid></control><display><type>article</type><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><source>Free E- Journals</source><creator>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</creator><creatorcontrib>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</creatorcontrib><description>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Black holes ; Einstein equations ; Equations of state ; Singularity (mathematics) ; Solution space</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pei-Ming, Ho</creatorcontrib><creatorcontrib>Kawai, Hikaru</creatorcontrib><creatorcontrib>Liao, Henry</creatorcontrib><creatorcontrib>Yokokura, Yuki</creatorcontrib><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><title>arXiv.org</title><description>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</description><subject>Asymptotic properties</subject><subject>Black holes</subject><subject>Einstein equations</subject><subject>Equations of state</subject><subject>Singularity (mathematics)</subject><subject>Solution space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLrRJL3FUq-jgIAqOJdRTbE0TzUXo26vgAzj9w_ePSEAZSyKeUjohobVdHMc0L2iWsYAc0hIuOEhYKt0LOYBQVyjbFxrbugF0A-6GsFcOTasNnJzxtfMGv3L0Qjnfw0qK-g47LXFGxo2QFsNfp2S-3ZzXu-hh9NOjdVWnvVEfqihnnBcLnifsv-sNBmo9Ag</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Pei-Ming, Ho</creator><creator>Kawai, Hikaru</creator><creator>Liao, Henry</creator><creator>Yokokura, Yuki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240423</creationdate><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><author>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28388798613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Black holes</topic><topic>Einstein equations</topic><topic>Equations of state</topic><topic>Singularity (mathematics)</topic><topic>Solution space</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei-Ming, Ho</creatorcontrib><creatorcontrib>Kawai, Hikaru</creatorcontrib><creatorcontrib>Liao, Henry</creatorcontrib><creatorcontrib>Yokokura, Yuki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei-Ming, Ho</au><au>Kawai, Hikaru</au><au>Liao, Henry</au><au>Yokokura, Yuki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</atitle><jtitle>arXiv.org</jtitle><date>2024-04-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2838879861
source Free E- Journals
subjects Asymptotic properties
Black holes
Einstein equations
Equations of state
Singularity (mathematics)
Solution space
title 4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=4D%20Weyl%20Anomaly%20and%20Diversity%20of%20the%20Interior%20Structure%20of%20Quantum%20Black%20Hole&rft.jtitle=arXiv.org&rft.au=Pei-Ming,%20Ho&rft.date=2024-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838879861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838879861&rft_id=info:pmid/&rfr_iscdi=true