4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole
We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pei-Ming, Ho Kawai, Hikaru Liao, Henry Yokokura, Yuki |
description | We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838879861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838879861</sourcerecordid><originalsourceid>FETCH-proquest_journals_28388798613</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLrRJL3FUq-jgIAqOJdRTbE0TzUXo26vgAzj9w_ePSEAZSyKeUjohobVdHMc0L2iWsYAc0hIuOEhYKt0LOYBQVyjbFxrbugF0A-6GsFcOTasNnJzxtfMGv3L0Qjnfw0qK-g47LXFGxo2QFsNfp2S-3ZzXu-hh9NOjdVWnvVEfqihnnBcLnifsv-sNBmo9Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838879861</pqid></control><display><type>article</type><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><source>Free E- Journals</source><creator>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</creator><creatorcontrib>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</creatorcontrib><description>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Black holes ; Einstein equations ; Equations of state ; Singularity (mathematics) ; Solution space</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pei-Ming, Ho</creatorcontrib><creatorcontrib>Kawai, Hikaru</creatorcontrib><creatorcontrib>Liao, Henry</creatorcontrib><creatorcontrib>Yokokura, Yuki</creatorcontrib><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><title>arXiv.org</title><description>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</description><subject>Asymptotic properties</subject><subject>Black holes</subject><subject>Einstein equations</subject><subject>Equations of state</subject><subject>Singularity (mathematics)</subject><subject>Solution space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLrRJL3FUq-jgIAqOJdRTbE0TzUXo26vgAzj9w_ePSEAZSyKeUjohobVdHMc0L2iWsYAc0hIuOEhYKt0LOYBQVyjbFxrbugF0A-6GsFcOTasNnJzxtfMGv3L0Qjnfw0qK-g47LXFGxo2QFsNfp2S-3ZzXu-hh9NOjdVWnvVEfqihnnBcLnifsv-sNBmo9Ag</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Pei-Ming, Ho</creator><creator>Kawai, Hikaru</creator><creator>Liao, Henry</creator><creator>Yokokura, Yuki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240423</creationdate><title>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</title><author>Pei-Ming, Ho ; Kawai, Hikaru ; Liao, Henry ; Yokokura, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28388798613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Black holes</topic><topic>Einstein equations</topic><topic>Equations of state</topic><topic>Singularity (mathematics)</topic><topic>Solution space</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei-Ming, Ho</creatorcontrib><creatorcontrib>Kawai, Hikaru</creatorcontrib><creatorcontrib>Liao, Henry</creatorcontrib><creatorcontrib>Yokokura, Yuki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei-Ming, Ho</au><au>Kawai, Hikaru</au><au>Liao, Henry</au><au>Yokokura, Yuki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole</atitle><jtitle>arXiv.org</jtitle><date>2024-04-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the interior metric of 4D spherically symmetric static black holes by using the semi-classical Einstein equation and find a consistent class of geometries with large curvatures. We approximate the matter fields by conformal fields and consider the contribution of the 4D Weyl anomaly, giving a state-independent constraint. Combining this with an equation of state yields an equation that determines the interior geometry completely. We explore the solution space of the equation in a non-perturbative manner for \(\hbar\). First, we find four types of asymptotic behaviors and examine the general features of the solutions. Then, by imposing physical conditions, we obtain approximately a general class of interior geometries: various combinations of dilute and dense structures without a horizon or singularity. This represents the diversity of the interior structure. Finally, we show that the number of possible patterns of such interior geometries corresponds to the Bekenstein-Hawking entropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2838879861 |
source | Free E- Journals |
subjects | Asymptotic properties Black holes Einstein equations Equations of state Singularity (mathematics) Solution space |
title | 4D Weyl Anomaly and Diversity of the Interior Structure of Quantum Black Hole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=4D%20Weyl%20Anomaly%20and%20Diversity%20of%20the%20Interior%20Structure%20of%20Quantum%20Black%20Hole&rft.jtitle=arXiv.org&rft.au=Pei-Ming,%20Ho&rft.date=2024-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838879861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838879861&rft_id=info:pmid/&rfr_iscdi=true |