A multivariate complexity analysis of the material consumption scheduling problem
The NP-hard problem Material Consumption Scheduling and related problems have been thoroughly studied since the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has individual resource demands. The goal is to minimize the makespan. We foc...
Gespeichert in:
Veröffentlicht in: | Journal of scheduling 2023-08, Vol.26 (4), p.369-382 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 4 |
container_start_page | 369 |
container_title | Journal of scheduling |
container_volume | 26 |
creator | Bentert, Matthias Bredereck, Robert Györgyi, Péter Kaczmarczyk, Andrzej Niedermeier, Rolf |
description | The NP-hard problem
Material Consumption Scheduling
and related problems have been thoroughly studied since the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has individual resource demands. The goal is to minimize the makespan. We focus on the single-machine case without preemption: from time to time, the resources of the machine are (partially) replenished, thus allowing for meeting a necessary precondition for processing further jobs. We initiate a systematic exploration of the parameterized computational complexity landscape of
Material Consumption Scheduling
, providing parameterized tractability as well as intractability results. Doing so, we mainly investigate how parameters related to the resource supplies influence the problem’s computational complexity. This leads to a deepened understanding of this fundamental scheduling problem. |
doi_str_mv | 10.1007/s10951-022-00771-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838878703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838878703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-cd6e880daac1caba50e954618b38a0cff1609ae34c8b5fd725a395d961344a273</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz9E8mkePy-ILFkRQ8BbSNN3N0pdJK_bbG7fC3jxNZub3n8n8Abgm-JZgLO8iwTknCFOKUioJ4idgkWo5Ihnlp4d3hgRh4hxcxLjHGCtJyQK8rmAz1oP_MsGbwUHbNX3tvv0wQdOaeoo-wq6Cw87BJvUTVCemjWPTD75rYbQ7V461b7ewD11Ru-YSnFWmju7qLy7B-8P92_oJbV4en9erDbJMkgHZUjilcGmMJdYUhmOX80wQVTBlsK0qInBuHMusKnhVSsoNy3mZpxuyzFDJluBmnpv2fo4uDnrfjSH9OWqqmFJSScwSRWfKhi7G4CrdB9-YMGmC9a91erZOJ-v0wTrNkwjOIpdO9fEoUVxQyoT6SAibkZia7daF4_Z_Bv8AeP59Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838878703</pqid></control><display><type>article</type><title>A multivariate complexity analysis of the material consumption scheduling problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bentert, Matthias ; Bredereck, Robert ; Györgyi, Péter ; Kaczmarczyk, Andrzej ; Niedermeier, Rolf</creator><creatorcontrib>Bentert, Matthias ; Bredereck, Robert ; Györgyi, Péter ; Kaczmarczyk, Andrzej ; Niedermeier, Rolf</creatorcontrib><description>The NP-hard problem
Material Consumption Scheduling
and related problems have been thoroughly studied since the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has individual resource demands. The goal is to minimize the makespan. We focus on the single-machine case without preemption: from time to time, the resources of the machine are (partially) replenished, thus allowing for meeting a necessary precondition for processing further jobs. We initiate a systematic exploration of the parameterized computational complexity landscape of
Material Consumption Scheduling
, providing parameterized tractability as well as intractability results. Doing so, we mainly investigate how parameters related to the resource supplies influence the problem’s computational complexity. This leads to a deepened understanding of this fundamental scheduling problem.</description><identifier>ISSN: 1094-6136</identifier><identifier>EISSN: 1099-1425</identifier><identifier>DOI: 10.1007/s10951-022-00771-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Business and Management ; Calculus of Variations and Optimal Control; Optimization ; Complexity ; Consumption ; Continuous casting ; Employment ; Nonrenewable resources ; Operations Research/Decision Theory ; Optimization ; Parameterization ; Renewable resources ; Scheduling ; Steel production ; Supply Chain Management</subject><ispartof>Journal of scheduling, 2023-08, Vol.26 (4), p.369-382</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-cd6e880daac1caba50e954618b38a0cff1609ae34c8b5fd725a395d961344a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10951-022-00771-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10951-022-00771-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bentert, Matthias</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Györgyi, Péter</creatorcontrib><creatorcontrib>Kaczmarczyk, Andrzej</creatorcontrib><creatorcontrib>Niedermeier, Rolf</creatorcontrib><title>A multivariate complexity analysis of the material consumption scheduling problem</title><title>Journal of scheduling</title><addtitle>J Sched</addtitle><description>The NP-hard problem
Material Consumption Scheduling
and related problems have been thoroughly studied since the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has individual resource demands. The goal is to minimize the makespan. We focus on the single-machine case without preemption: from time to time, the resources of the machine are (partially) replenished, thus allowing for meeting a necessary precondition for processing further jobs. We initiate a systematic exploration of the parameterized computational complexity landscape of
Material Consumption Scheduling
, providing parameterized tractability as well as intractability results. Doing so, we mainly investigate how parameters related to the resource supplies influence the problem’s computational complexity. This leads to a deepened understanding of this fundamental scheduling problem.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Complexity</subject><subject>Consumption</subject><subject>Continuous casting</subject><subject>Employment</subject><subject>Nonrenewable resources</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Renewable resources</subject><subject>Scheduling</subject><subject>Steel production</subject><subject>Supply Chain Management</subject><issn>1094-6136</issn><issn>1099-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz9E8mkePy-ILFkRQ8BbSNN3N0pdJK_bbG7fC3jxNZub3n8n8Abgm-JZgLO8iwTknCFOKUioJ4idgkWo5Ihnlp4d3hgRh4hxcxLjHGCtJyQK8rmAz1oP_MsGbwUHbNX3tvv0wQdOaeoo-wq6Cw87BJvUTVCemjWPTD75rYbQ7V461b7ewD11Ru-YSnFWmju7qLy7B-8P92_oJbV4en9erDbJMkgHZUjilcGmMJdYUhmOX80wQVTBlsK0qInBuHMusKnhVSsoNy3mZpxuyzFDJluBmnpv2fo4uDnrfjSH9OWqqmFJSScwSRWfKhi7G4CrdB9-YMGmC9a91erZOJ-v0wTrNkwjOIpdO9fEoUVxQyoT6SAibkZia7daF4_Z_Bv8AeP59Dg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bentert, Matthias</creator><creator>Bredereck, Robert</creator><creator>Györgyi, Péter</creator><creator>Kaczmarczyk, Andrzej</creator><creator>Niedermeier, Rolf</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20230801</creationdate><title>A multivariate complexity analysis of the material consumption scheduling problem</title><author>Bentert, Matthias ; Bredereck, Robert ; Györgyi, Péter ; Kaczmarczyk, Andrzej ; Niedermeier, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-cd6e880daac1caba50e954618b38a0cff1609ae34c8b5fd725a395d961344a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Complexity</topic><topic>Consumption</topic><topic>Continuous casting</topic><topic>Employment</topic><topic>Nonrenewable resources</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Renewable resources</topic><topic>Scheduling</topic><topic>Steel production</topic><topic>Supply Chain Management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentert, Matthias</creatorcontrib><creatorcontrib>Bredereck, Robert</creatorcontrib><creatorcontrib>Györgyi, Péter</creatorcontrib><creatorcontrib>Kaczmarczyk, Andrzej</creatorcontrib><creatorcontrib>Niedermeier, Rolf</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of scheduling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentert, Matthias</au><au>Bredereck, Robert</au><au>Györgyi, Péter</au><au>Kaczmarczyk, Andrzej</au><au>Niedermeier, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multivariate complexity analysis of the material consumption scheduling problem</atitle><jtitle>Journal of scheduling</jtitle><stitle>J Sched</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>26</volume><issue>4</issue><spage>369</spage><epage>382</epage><pages>369-382</pages><issn>1094-6136</issn><eissn>1099-1425</eissn><abstract>The NP-hard problem
Material Consumption Scheduling
and related problems have been thoroughly studied since the 1980’s. Roughly speaking, the problem deals with scheduling jobs that consume non-renewable resources—each job has individual resource demands. The goal is to minimize the makespan. We focus on the single-machine case without preemption: from time to time, the resources of the machine are (partially) replenished, thus allowing for meeting a necessary precondition for processing further jobs. We initiate a systematic exploration of the parameterized computational complexity landscape of
Material Consumption Scheduling
, providing parameterized tractability as well as intractability results. Doing so, we mainly investigate how parameters related to the resource supplies influence the problem’s computational complexity. This leads to a deepened understanding of this fundamental scheduling problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10951-022-00771-5</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-6136 |
ispartof | Journal of scheduling, 2023-08, Vol.26 (4), p.369-382 |
issn | 1094-6136 1099-1425 |
language | eng |
recordid | cdi_proquest_journals_2838878703 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Business and Management Calculus of Variations and Optimal Control Optimization Complexity Consumption Continuous casting Employment Nonrenewable resources Operations Research/Decision Theory Optimization Parameterization Renewable resources Scheduling Steel production Supply Chain Management |
title | A multivariate complexity analysis of the material consumption scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multivariate%20complexity%20analysis%20of%20the%20material%20consumption%20scheduling%20problem&rft.jtitle=Journal%20of%20scheduling&rft.au=Bentert,%20Matthias&rft.date=2023-08-01&rft.volume=26&rft.issue=4&rft.spage=369&rft.epage=382&rft.pages=369-382&rft.issn=1094-6136&rft.eissn=1099-1425&rft_id=info:doi/10.1007/s10951-022-00771-5&rft_dat=%3Cproquest_cross%3E2838878703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838878703&rft_id=info:pmid/&rfr_iscdi=true |