Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect

Purely organic room‐temperature phosphorescence (RTP) materials have attracted increasing attention due to their unique photophysical properties and widespread optoelectrical applications, but the pursuit of high quantum yield is still a continual struggle for RTP emission under ambient conditions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-07, Vol.11 (14), p.n/a
Hauptverfasser: He, Yixiao, Wang, Jing, Li, Qiuying, Qu, Shuli, Zhou, Chifeng, Yin, Chengzhu, Ma, Huili, Shi, Huifang, Meng, Zhengong, An, Zhongfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced optical materials
container_volume 11
creator He, Yixiao
Wang, Jing
Li, Qiuying
Qu, Shuli
Zhou, Chifeng
Yin, Chengzhu
Ma, Huili
Shi, Huifang
Meng, Zhengong
An, Zhongfu
description Purely organic room‐temperature phosphorescence (RTP) materials have attracted increasing attention due to their unique photophysical properties and widespread optoelectrical applications, but the pursuit of high quantum yield is still a continual struggle for RTP emission under ambient conditions. Here, a series of novel RTP molecules (26CIM, 246CIM, 24CIM, and 25CIM) are developed on the basis of indole luminophore, in which a carbonyl group bridges indole and chloro‐substituted phenyl group. The structural isomerism is systematically regulated toward enhancing the intramolecular‐space heavy‐atom effect, thus promoting the spin–orbit coupling and intersystem crossing for high RTP efficiency. While rationally modulating the intramolecular‐space heavy‐atom effect, the phosphorescence efficiency is dramatically increased by 16‐fold from 2.9% (24CIM) to 48.9% (26CIM). Basically, the fully occupied chlorine atoms at the positions 2 and 6 can effectively favor the stronger intramolecular H…Cl effect, and the tight lock coupling with anti‐parallel stacking in 26CIM further boosts RTP emission synergistically. The experimental findings along with deeper theoretical insights elucidate the structure–performance relationship clearly, and further suggest a general strategy for rationally constructing high‐efficiency RTP materials. Quite a high phosphorescence efficiency up to 48.9% is achieved under ambient conditions by facile modulation of intramolecular‐space heavy‐atom effect. When the well‐controlled intramolecular interactions are coupled with the concomitant variation of packing modes, room‐temperature phosphorescence emission is dramatically boosted, in which heavy atoms are prone to facilitate the intersystem crossing process and anti‐parallel stacking favors the stabilization of triplet excitons.
doi_str_mv 10.1002/adom.202201641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838650440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838650440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-3289ad34e852c9c4f786e8ee837784b4544353f06e9baa5d357632dcbd359c893</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWLRb1wHXqfOXZGZZarWFSkXrephObmxqkokzSSU7H8Fn9EmcUlF3ru45cL5z4QTBBUYjjBC5UpmpRgQRgnDC8FEwIFjEEUYpPv6jT4Ohc1uEkDdUsHQQvMyK503Zh9M8L3QBdRs-GFN9vn-soGrAqrazEN5vjGs2xoLTUGvvralMC1m4K1Q4r1urKlOC7kplPfnYKJ-Zgdr13o1bU-3bQbfnwUmuSgfD73sWPN1MV5NZtFjezifjRaQpTnFECRcqowx4TLTQLE95AhyA0zTlbM1ixmhMc5SAWCsVZzROE0oyvfZKaC7oWXB56G2see3AtXJrOlv7l5JwypMYMYZ8anRIaWucs5DLxhaVsr3ESO43lftN5c-mHhAH4K0oof8nLcfXy7tf9guyOX49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838650440</pqid></control><display><type>article</type><title>Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect</title><source>Wiley Journals</source><creator>He, Yixiao ; Wang, Jing ; Li, Qiuying ; Qu, Shuli ; Zhou, Chifeng ; Yin, Chengzhu ; Ma, Huili ; Shi, Huifang ; Meng, Zhengong ; An, Zhongfu</creator><creatorcontrib>He, Yixiao ; Wang, Jing ; Li, Qiuying ; Qu, Shuli ; Zhou, Chifeng ; Yin, Chengzhu ; Ma, Huili ; Shi, Huifang ; Meng, Zhengong ; An, Zhongfu</creatorcontrib><description>Purely organic room‐temperature phosphorescence (RTP) materials have attracted increasing attention due to their unique photophysical properties and widespread optoelectrical applications, but the pursuit of high quantum yield is still a continual struggle for RTP emission under ambient conditions. Here, a series of novel RTP molecules (26CIM, 246CIM, 24CIM, and 25CIM) are developed on the basis of indole luminophore, in which a carbonyl group bridges indole and chloro‐substituted phenyl group. The structural isomerism is systematically regulated toward enhancing the intramolecular‐space heavy‐atom effect, thus promoting the spin–orbit coupling and intersystem crossing for high RTP efficiency. While rationally modulating the intramolecular‐space heavy‐atom effect, the phosphorescence efficiency is dramatically increased by 16‐fold from 2.9% (24CIM) to 48.9% (26CIM). Basically, the fully occupied chlorine atoms at the positions 2 and 6 can effectively favor the stronger intramolecular H…Cl effect, and the tight lock coupling with anti‐parallel stacking in 26CIM further boosts RTP emission synergistically. The experimental findings along with deeper theoretical insights elucidate the structure–performance relationship clearly, and further suggest a general strategy for rationally constructing high‐efficiency RTP materials. Quite a high phosphorescence efficiency up to 48.9% is achieved under ambient conditions by facile modulation of intramolecular‐space heavy‐atom effect. When the well‐controlled intramolecular interactions are coupled with the concomitant variation of packing modes, room‐temperature phosphorescence emission is dramatically boosted, in which heavy atoms are prone to facilitate the intersystem crossing process and anti‐parallel stacking favors the stabilization of triplet excitons.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202201641</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbonyl groups ; Carbonyls ; Chlorine ; Coupling (molecular) ; Efficiency ; Emission ; indole ; intramolecular‐space heavy‐atom effect ; Materials science ; molecular packing ; Optics ; Phosphorescence ; phosphorescence quantum efficiency ; room‐temperature phosphorescence ; Spin-orbit interactions</subject><ispartof>Advanced optical materials, 2023-07, Vol.11 (14), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-3289ad34e852c9c4f786e8ee837784b4544353f06e9baa5d357632dcbd359c893</citedby><cites>FETCH-LOGICAL-c3171-3289ad34e852c9c4f786e8ee837784b4544353f06e9baa5d357632dcbd359c893</cites><orcidid>0000-0002-6522-2654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202201641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202201641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>He, Yixiao</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Qu, Shuli</creatorcontrib><creatorcontrib>Zhou, Chifeng</creatorcontrib><creatorcontrib>Yin, Chengzhu</creatorcontrib><creatorcontrib>Ma, Huili</creatorcontrib><creatorcontrib>Shi, Huifang</creatorcontrib><creatorcontrib>Meng, Zhengong</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><title>Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect</title><title>Advanced optical materials</title><description>Purely organic room‐temperature phosphorescence (RTP) materials have attracted increasing attention due to their unique photophysical properties and widespread optoelectrical applications, but the pursuit of high quantum yield is still a continual struggle for RTP emission under ambient conditions. Here, a series of novel RTP molecules (26CIM, 246CIM, 24CIM, and 25CIM) are developed on the basis of indole luminophore, in which a carbonyl group bridges indole and chloro‐substituted phenyl group. The structural isomerism is systematically regulated toward enhancing the intramolecular‐space heavy‐atom effect, thus promoting the spin–orbit coupling and intersystem crossing for high RTP efficiency. While rationally modulating the intramolecular‐space heavy‐atom effect, the phosphorescence efficiency is dramatically increased by 16‐fold from 2.9% (24CIM) to 48.9% (26CIM). Basically, the fully occupied chlorine atoms at the positions 2 and 6 can effectively favor the stronger intramolecular H…Cl effect, and the tight lock coupling with anti‐parallel stacking in 26CIM further boosts RTP emission synergistically. The experimental findings along with deeper theoretical insights elucidate the structure–performance relationship clearly, and further suggest a general strategy for rationally constructing high‐efficiency RTP materials. Quite a high phosphorescence efficiency up to 48.9% is achieved under ambient conditions by facile modulation of intramolecular‐space heavy‐atom effect. When the well‐controlled intramolecular interactions are coupled with the concomitant variation of packing modes, room‐temperature phosphorescence emission is dramatically boosted, in which heavy atoms are prone to facilitate the intersystem crossing process and anti‐parallel stacking favors the stabilization of triplet excitons.</description><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Chlorine</subject><subject>Coupling (molecular)</subject><subject>Efficiency</subject><subject>Emission</subject><subject>indole</subject><subject>intramolecular‐space heavy‐atom effect</subject><subject>Materials science</subject><subject>molecular packing</subject><subject>Optics</subject><subject>Phosphorescence</subject><subject>phosphorescence quantum efficiency</subject><subject>room‐temperature phosphorescence</subject><subject>Spin-orbit interactions</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhYMoWLRb1wHXqfOXZGZZarWFSkXrephObmxqkokzSSU7H8Fn9EmcUlF3ru45cL5z4QTBBUYjjBC5UpmpRgQRgnDC8FEwIFjEEUYpPv6jT4Ohc1uEkDdUsHQQvMyK503Zh9M8L3QBdRs-GFN9vn-soGrAqrazEN5vjGs2xoLTUGvvralMC1m4K1Q4r1urKlOC7kplPfnYKJ-Zgdr13o1bU-3bQbfnwUmuSgfD73sWPN1MV5NZtFjezifjRaQpTnFECRcqowx4TLTQLE95AhyA0zTlbM1ixmhMc5SAWCsVZzROE0oyvfZKaC7oWXB56G2see3AtXJrOlv7l5JwypMYMYZ8anRIaWucs5DLxhaVsr3ESO43lftN5c-mHhAH4K0oof8nLcfXy7tf9guyOX49</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>He, Yixiao</creator><creator>Wang, Jing</creator><creator>Li, Qiuying</creator><creator>Qu, Shuli</creator><creator>Zhou, Chifeng</creator><creator>Yin, Chengzhu</creator><creator>Ma, Huili</creator><creator>Shi, Huifang</creator><creator>Meng, Zhengong</creator><creator>An, Zhongfu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6522-2654</orcidid></search><sort><creationdate>20230701</creationdate><title>Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect</title><author>He, Yixiao ; Wang, Jing ; Li, Qiuying ; Qu, Shuli ; Zhou, Chifeng ; Yin, Chengzhu ; Ma, Huili ; Shi, Huifang ; Meng, Zhengong ; An, Zhongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-3289ad34e852c9c4f786e8ee837784b4544353f06e9baa5d357632dcbd359c893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Chlorine</topic><topic>Coupling (molecular)</topic><topic>Efficiency</topic><topic>Emission</topic><topic>indole</topic><topic>intramolecular‐space heavy‐atom effect</topic><topic>Materials science</topic><topic>molecular packing</topic><topic>Optics</topic><topic>Phosphorescence</topic><topic>phosphorescence quantum efficiency</topic><topic>room‐temperature phosphorescence</topic><topic>Spin-orbit interactions</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Yixiao</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Qu, Shuli</creatorcontrib><creatorcontrib>Zhou, Chifeng</creatorcontrib><creatorcontrib>Yin, Chengzhu</creatorcontrib><creatorcontrib>Ma, Huili</creatorcontrib><creatorcontrib>Shi, Huifang</creatorcontrib><creatorcontrib>Meng, Zhengong</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yixiao</au><au>Wang, Jing</au><au>Li, Qiuying</au><au>Qu, Shuli</au><au>Zhou, Chifeng</au><au>Yin, Chengzhu</au><au>Ma, Huili</au><au>Shi, Huifang</au><au>Meng, Zhengong</au><au>An, Zhongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect</atitle><jtitle>Advanced optical materials</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>14</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Purely organic room‐temperature phosphorescence (RTP) materials have attracted increasing attention due to their unique photophysical properties and widespread optoelectrical applications, but the pursuit of high quantum yield is still a continual struggle for RTP emission under ambient conditions. Here, a series of novel RTP molecules (26CIM, 246CIM, 24CIM, and 25CIM) are developed on the basis of indole luminophore, in which a carbonyl group bridges indole and chloro‐substituted phenyl group. The structural isomerism is systematically regulated toward enhancing the intramolecular‐space heavy‐atom effect, thus promoting the spin–orbit coupling and intersystem crossing for high RTP efficiency. While rationally modulating the intramolecular‐space heavy‐atom effect, the phosphorescence efficiency is dramatically increased by 16‐fold from 2.9% (24CIM) to 48.9% (26CIM). Basically, the fully occupied chlorine atoms at the positions 2 and 6 can effectively favor the stronger intramolecular H…Cl effect, and the tight lock coupling with anti‐parallel stacking in 26CIM further boosts RTP emission synergistically. The experimental findings along with deeper theoretical insights elucidate the structure–performance relationship clearly, and further suggest a general strategy for rationally constructing high‐efficiency RTP materials. Quite a high phosphorescence efficiency up to 48.9% is achieved under ambient conditions by facile modulation of intramolecular‐space heavy‐atom effect. When the well‐controlled intramolecular interactions are coupled with the concomitant variation of packing modes, room‐temperature phosphorescence emission is dramatically boosted, in which heavy atoms are prone to facilitate the intersystem crossing process and anti‐parallel stacking favors the stabilization of triplet excitons.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202201641</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6522-2654</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-07, Vol.11 (14), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2838650440
source Wiley Journals
subjects Carbonyl groups
Carbonyls
Chlorine
Coupling (molecular)
Efficiency
Emission
indole
intramolecular‐space heavy‐atom effect
Materials science
molecular packing
Optics
Phosphorescence
phosphorescence quantum efficiency
room‐temperature phosphorescence
Spin-orbit interactions
title Highly Efficient Room‐Temperature Phosphorescence Promoted via Intramolecular‐Space Heavy‐Atom Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Room%E2%80%90Temperature%20Phosphorescence%20Promoted%20via%20Intramolecular%E2%80%90Space%20Heavy%E2%80%90Atom%20Effect&rft.jtitle=Advanced%20optical%20materials&rft.au=He,%20Yixiao&rft.date=2023-07-01&rft.volume=11&rft.issue=14&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202201641&rft_dat=%3Cproquest_cross%3E2838650440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838650440&rft_id=info:pmid/&rfr_iscdi=true