Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory

The rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2023-07, Vol.32 (4), p.n/a
Hauptverfasser: van Leuken, Stijn H. M., van Benthem, Rolf A. T. M., Tuinier, Remco, Vis, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Macromolecular theory and simulations
container_volume 32
creator van Leuken, Stijn H. M.
van Benthem, Rolf A. T. M.
Tuinier, Remco
Vis, Mark
description The rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct predictive tool quantifying how material properties change when molecular features change provides a less time‐ and resource‐consuming route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components, but for multi‐component systems the large number of equations makes numerical computations challenging. Approximate solutions to Flory–Huggins theory relating miscibility and solubility to molecular features are presented. The set of approximate relations show a wider range of accuracy compared to existing approximations. The combination of the analytical, lower‐order, and more accurate higher‐order approximations together contribute to a broader applicability and extensibility of Flory–Huggins theory. A direct predictive tool quantifying how polymer concentrations change when molecular features change provides a route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components. This paper presents approximations relating concentrations and molecular features based on Flory–Huggins solution theory, which can be used for multi‐component systems.
doi_str_mv 10.1002/mats.202300001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838635788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838635788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-f1f46160190942382b4d675635547488e47c21ba4ed0a610f938bef1f87a3ea3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyylNYKLRbMfpikk3ZKmklnEjQ7H0HwDfskTqno0rM5h8P_ncsPwD1GI4wQedyr1o8IIhSFwBdggGOCIyqwuAw1IiTClLFrcOP9LiiESMkAbFdOr03RmnoDl13VmuPH58TuG1vruoWrrfIaTg-dqUzujIK2hCtb9XvtPOz8CRo3jbPvJiw3tvawtXBWWdcfP77m3WZjQivb6tC4BVelqry--8lDkM2m2WQeLV6enifjRVTQOMVRiUuW4ARhgQQjlJOcrZM0Tmgcs5RxrllaEJwrptdIJRiVgvJcB4qnimpFh-DhPDZcdei0b-XOdq4OGyXhlIc5KedBNTqrCme9d7qUjQsvuF5iJE9mypOZ8tfMAIgz8GYq3f-jlstx9vrHfgNnxHtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838635788</pqid></control><display><type>article</type><title>Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>van Leuken, Stijn H. M. ; van Benthem, Rolf A. T. M. ; Tuinier, Remco ; Vis, Mark</creator><creatorcontrib>van Leuken, Stijn H. M. ; van Benthem, Rolf A. T. M. ; Tuinier, Remco ; Vis, Mark</creatorcontrib><description>The rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct predictive tool quantifying how material properties change when molecular features change provides a less time‐ and resource‐consuming route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components, but for multi‐component systems the large number of equations makes numerical computations challenging. Approximate solutions to Flory–Huggins theory relating miscibility and solubility to molecular features are presented. The set of approximate relations show a wider range of accuracy compared to existing approximations. The combination of the analytical, lower‐order, and more accurate higher‐order approximations together contribute to a broader applicability and extensibility of Flory–Huggins theory. A direct predictive tool quantifying how polymer concentrations change when molecular features change provides a route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components. This paper presents approximations relating concentrations and molecular features based on Flory–Huggins solution theory, which can be used for multi‐component systems.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.202300001</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>analytical ; Approximation ; approximations ; binodal ; Flory–Huggins ; Material properties ; Miscibility ; Mixtures ; Optimization ; Phase equilibria ; Polymers ; solution theory ; solvency</subject><ispartof>Macromolecular theory and simulations, 2023-07, Vol.32 (4), p.n/a</ispartof><rights>2023 The Authors. Macromolecular Theory and Simulations published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-f1f46160190942382b4d675635547488e47c21ba4ed0a610f938bef1f87a3ea3</citedby><cites>FETCH-LOGICAL-c3571-f1f46160190942382b4d675635547488e47c21ba4ed0a610f938bef1f87a3ea3</cites><orcidid>0000-0002-2529-7432 ; 0000-0001-7431-3948 ; 0000-0002-2992-1175 ; 0000-0002-4096-7107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.202300001$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.202300001$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>van Leuken, Stijn H. M.</creatorcontrib><creatorcontrib>van Benthem, Rolf A. T. M.</creatorcontrib><creatorcontrib>Tuinier, Remco</creatorcontrib><creatorcontrib>Vis, Mark</creatorcontrib><title>Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory</title><title>Macromolecular theory and simulations</title><description>The rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct predictive tool quantifying how material properties change when molecular features change provides a less time‐ and resource‐consuming route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components, but for multi‐component systems the large number of equations makes numerical computations challenging. Approximate solutions to Flory–Huggins theory relating miscibility and solubility to molecular features are presented. The set of approximate relations show a wider range of accuracy compared to existing approximations. The combination of the analytical, lower‐order, and more accurate higher‐order approximations together contribute to a broader applicability and extensibility of Flory–Huggins theory. A direct predictive tool quantifying how polymer concentrations change when molecular features change provides a route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components. This paper presents approximations relating concentrations and molecular features based on Flory–Huggins solution theory, which can be used for multi‐component systems.</description><subject>analytical</subject><subject>Approximation</subject><subject>approximations</subject><subject>binodal</subject><subject>Flory–Huggins</subject><subject>Material properties</subject><subject>Miscibility</subject><subject>Mixtures</subject><subject>Optimization</subject><subject>Phase equilibria</subject><subject>Polymers</subject><subject>solution theory</subject><subject>solvency</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyylNYKLRbMfpikk3ZKmklnEjQ7H0HwDfskTqno0rM5h8P_ncsPwD1GI4wQedyr1o8IIhSFwBdggGOCIyqwuAw1IiTClLFrcOP9LiiESMkAbFdOr03RmnoDl13VmuPH58TuG1vruoWrrfIaTg-dqUzujIK2hCtb9XvtPOz8CRo3jbPvJiw3tvawtXBWWdcfP77m3WZjQivb6tC4BVelqry--8lDkM2m2WQeLV6enifjRVTQOMVRiUuW4ARhgQQjlJOcrZM0Tmgcs5RxrllaEJwrptdIJRiVgvJcB4qnimpFh-DhPDZcdei0b-XOdq4OGyXhlIc5KedBNTqrCme9d7qUjQsvuF5iJE9mypOZ8tfMAIgz8GYq3f-jlstx9vrHfgNnxHtM</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>van Leuken, Stijn H. M.</creator><creator>van Benthem, Rolf A. T. M.</creator><creator>Tuinier, Remco</creator><creator>Vis, Mark</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2529-7432</orcidid><orcidid>https://orcid.org/0000-0001-7431-3948</orcidid><orcidid>https://orcid.org/0000-0002-2992-1175</orcidid><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid></search><sort><creationdate>202307</creationdate><title>Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory</title><author>van Leuken, Stijn H. M. ; van Benthem, Rolf A. T. M. ; Tuinier, Remco ; Vis, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-f1f46160190942382b4d675635547488e47c21ba4ed0a610f938bef1f87a3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>analytical</topic><topic>Approximation</topic><topic>approximations</topic><topic>binodal</topic><topic>Flory–Huggins</topic><topic>Material properties</topic><topic>Miscibility</topic><topic>Mixtures</topic><topic>Optimization</topic><topic>Phase equilibria</topic><topic>Polymers</topic><topic>solution theory</topic><topic>solvency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Leuken, Stijn H. M.</creatorcontrib><creatorcontrib>van Benthem, Rolf A. T. M.</creatorcontrib><creatorcontrib>Tuinier, Remco</creatorcontrib><creatorcontrib>Vis, Mark</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Leuken, Stijn H. M.</au><au>van Benthem, Rolf A. T. M.</au><au>Tuinier, Remco</au><au>Vis, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2023-07</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>The rational development of sustainable polymeric materials demands tunable properties using mixtures of polymers with chemical variations. At the same time, the sheer number of potential variations and combinations makes experimentally or numerically studying every new mixture impractical. A direct predictive tool quantifying how material properties change when molecular features change provides a less time‐ and resource‐consuming route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components, but for multi‐component systems the large number of equations makes numerical computations challenging. Approximate solutions to Flory–Huggins theory relating miscibility and solubility to molecular features are presented. The set of approximate relations show a wider range of accuracy compared to existing approximations. The combination of the analytical, lower‐order, and more accurate higher‐order approximations together contribute to a broader applicability and extensibility of Flory–Huggins theory. A direct predictive tool quantifying how polymer concentrations change when molecular features change provides a route to optimization. Numerically solving Flory–Huggins theory provides such a tool for mono‐disperse mixtures with a limited number of components. This paper presents approximations relating concentrations and molecular features based on Flory–Huggins solution theory, which can be used for multi‐component systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.202300001</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2529-7432</orcidid><orcidid>https://orcid.org/0000-0001-7431-3948</orcidid><orcidid>https://orcid.org/0000-0002-2992-1175</orcidid><orcidid>https://orcid.org/0000-0002-4096-7107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2023-07, Vol.32 (4), p.n/a
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_journals_2838635788
source Wiley Online Library Journals Frontfile Complete
subjects analytical
Approximation
approximations
binodal
Flory–Huggins
Material properties
Miscibility
Mixtures
Optimization
Phase equilibria
Polymers
solution theory
solvency
title Predicting Multi‐Component Phase Equilibria of Polymers using Approximations to Flory–Huggins Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Multi%E2%80%90Component%20Phase%20Equilibria%20of%20Polymers%20using%20Approximations%20to%20Flory%E2%80%93Huggins%20Theory&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=van%20Leuken,%20Stijn%20H.%20M.&rft.date=2023-07&rft.volume=32&rft.issue=4&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.202300001&rft_dat=%3Cproquest_cross%3E2838635788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838635788&rft_id=info:pmid/&rfr_iscdi=true