A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring
A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft m...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-07, Vol.33 (29), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Wang, Zibi Wang, Ding Liu, Dong Han, Xiang Liu, Xiaoxu Torun, Hamdi Guo, Zhanhu Duan, Sidi He, Ximin Zhang, Xuehua Xu, Ben Bin Chen, Fei |
description | A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures. |
doi_str_mv | 10.1002/adfm.202301117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838569959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838569959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgdcp86dye-yav-gRVAL7sIkuVOmJpk6k6rZ-Qg-o09iSqUuXd3D5TvnwCHkEtgAGOPXslDVgDMuGABER6QHIYSeYDw-Pmh4PiVnzq0ZgygSfo-8DOmy1m9onSzprG7QKpnrTj82Vja4aumollmp6xVdlt3r-_PrwWRb19AJlnTaZlYXjipj6eijsVghHW10gbbqIm606fCFqXVjbJdwTk6ULB1e_N4-WY5HT7dTb34_md0O514ugijyJAQRKhB-ngADP8YsZFnAcu5HivuJyIpA5aooOErgGKiAR-ALHiuBDGMWij652udurHndomvStdnauqtMeSziIEySIOmowZ7KrXHOoko3VlfStimwdDdouhs0PQzaGZK94V2X2P5Dp8O78eLP-wPd_nws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838569959</pqid></control><display><type>article</type><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><source>Wiley Online Library All Journals</source><creator>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</creator><creatorcontrib>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</creatorcontrib><description>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202301117</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Elastomers ; Face recognition ; gel hybrids ; Gelatin ; Hybrid systems ; Hydrogels ; interface engineering ; Materials science ; mechano‐sensing ; Monitoring ; Signal quality ; strain sensors ; Toughness ; ultra‐stretchable</subject><ispartof>Advanced functional materials, 2023-07, Vol.33 (29), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</citedby><cites>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</cites><orcidid>0000-0002-6747-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202301117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202301117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Zibi</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaoxu</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Duan, Sidi</creatorcontrib><creatorcontrib>He, Ximin</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><title>Advanced functional materials</title><description>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</description><subject>Elastomers</subject><subject>Face recognition</subject><subject>gel hybrids</subject><subject>Gelatin</subject><subject>Hybrid systems</subject><subject>Hydrogels</subject><subject>interface engineering</subject><subject>Materials science</subject><subject>mechano‐sensing</subject><subject>Monitoring</subject><subject>Signal quality</subject><subject>strain sensors</subject><subject>Toughness</subject><subject>ultra‐stretchable</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1Kw0AUhQdRsFa3rgdcp86dye-yav-gRVAL7sIkuVOmJpk6k6rZ-Qg-o09iSqUuXd3D5TvnwCHkEtgAGOPXslDVgDMuGABER6QHIYSeYDw-Pmh4PiVnzq0ZgygSfo-8DOmy1m9onSzprG7QKpnrTj82Vja4aumollmp6xVdlt3r-_PrwWRb19AJlnTaZlYXjipj6eijsVghHW10gbbqIm606fCFqXVjbJdwTk6ULB1e_N4-WY5HT7dTb34_md0O514ugijyJAQRKhB-ngADP8YsZFnAcu5HivuJyIpA5aooOErgGKiAR-ALHiuBDGMWij652udurHndomvStdnauqtMeSziIEySIOmowZ7KrXHOoko3VlfStimwdDdouhs0PQzaGZK94V2X2P5Dp8O78eLP-wPd_nws</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Zibi</creator><creator>Wang, Ding</creator><creator>Liu, Dong</creator><creator>Han, Xiang</creator><creator>Liu, Xiaoxu</creator><creator>Torun, Hamdi</creator><creator>Guo, Zhanhu</creator><creator>Duan, Sidi</creator><creator>He, Ximin</creator><creator>Zhang, Xuehua</creator><creator>Xu, Ben Bin</creator><creator>Chen, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid></search><sort><creationdate>20230701</creationdate><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><author>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Elastomers</topic><topic>Face recognition</topic><topic>gel hybrids</topic><topic>Gelatin</topic><topic>Hybrid systems</topic><topic>Hydrogels</topic><topic>interface engineering</topic><topic>Materials science</topic><topic>mechano‐sensing</topic><topic>Monitoring</topic><topic>Signal quality</topic><topic>strain sensors</topic><topic>Toughness</topic><topic>ultra‐stretchable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zibi</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaoxu</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Duan, Sidi</creatorcontrib><creatorcontrib>He, Ximin</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zibi</au><au>Wang, Ding</au><au>Liu, Dong</au><au>Han, Xiang</au><au>Liu, Xiaoxu</au><au>Torun, Hamdi</au><au>Guo, Zhanhu</au><au>Duan, Sidi</au><au>He, Ximin</au><au>Zhang, Xuehua</au><au>Xu, Ben Bin</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</atitle><jtitle>Advanced functional materials</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>29</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202301117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-07, Vol.33 (29), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2838569959 |
source | Wiley Online Library All Journals |
subjects | Elastomers Face recognition gel hybrids Gelatin Hybrid systems Hydrogels interface engineering Materials science mechano‐sensing Monitoring Signal quality strain sensors Toughness ultra‐stretchable |
title | A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Interfacial%20Strategy%20Enabling%20Ultra%E2%80%90Robust%20Gel%20Hybrids%20for%20Extreme%20Epidermal%20Bio%E2%80%90Monitoring&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Zibi&rft.date=2023-07-01&rft.volume=33&rft.issue=29&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202301117&rft_dat=%3Cproquest_cross%3E2838569959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838569959&rft_id=info:pmid/&rfr_iscdi=true |