A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring

A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-07, Vol.33 (29), p.n/a
Hauptverfasser: Wang, Zibi, Wang, Ding, Liu, Dong, Han, Xiang, Liu, Xiaoxu, Torun, Hamdi, Guo, Zhanhu, Duan, Sidi, He, Ximin, Zhang, Xuehua, Xu, Ben Bin, Chen, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Advanced functional materials
container_volume 33
creator Wang, Zibi
Wang, Ding
Liu, Dong
Han, Xiang
Liu, Xiaoxu
Torun, Hamdi
Guo, Zhanhu
Duan, Sidi
He, Ximin
Zhang, Xuehua
Xu, Ben Bin
Chen, Fei
description A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired. This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.
doi_str_mv 10.1002/adfm.202301117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838569959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838569959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgdcp86dye-yav-gRVAL7sIkuVOmJpk6k6rZ-Qg-o09iSqUuXd3D5TvnwCHkEtgAGOPXslDVgDMuGABER6QHIYSeYDw-Pmh4PiVnzq0ZgygSfo-8DOmy1m9onSzprG7QKpnrTj82Vja4aumollmp6xVdlt3r-_PrwWRb19AJlnTaZlYXjipj6eijsVghHW10gbbqIm606fCFqXVjbJdwTk6ULB1e_N4-WY5HT7dTb34_md0O514ugijyJAQRKhB-ngADP8YsZFnAcu5HivuJyIpA5aooOErgGKiAR-ALHiuBDGMWij652udurHndomvStdnauqtMeSziIEySIOmowZ7KrXHOoko3VlfStimwdDdouhs0PQzaGZK94V2X2P5Dp8O78eLP-wPd_nws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838569959</pqid></control><display><type>article</type><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><source>Wiley Online Library All Journals</source><creator>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</creator><creatorcontrib>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</creatorcontrib><description>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired. This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202301117</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Elastomers ; Face recognition ; gel hybrids ; Gelatin ; Hybrid systems ; Hydrogels ; interface engineering ; Materials science ; mechano‐sensing ; Monitoring ; Signal quality ; strain sensors ; Toughness ; ultra‐stretchable</subject><ispartof>Advanced functional materials, 2023-07, Vol.33 (29), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</citedby><cites>FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</cites><orcidid>0000-0002-6747-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202301117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202301117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Zibi</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaoxu</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Duan, Sidi</creatorcontrib><creatorcontrib>He, Ximin</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><title>Advanced functional materials</title><description>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired. This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</description><subject>Elastomers</subject><subject>Face recognition</subject><subject>gel hybrids</subject><subject>Gelatin</subject><subject>Hybrid systems</subject><subject>Hydrogels</subject><subject>interface engineering</subject><subject>Materials science</subject><subject>mechano‐sensing</subject><subject>Monitoring</subject><subject>Signal quality</subject><subject>strain sensors</subject><subject>Toughness</subject><subject>ultra‐stretchable</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1Kw0AUhQdRsFa3rgdcp86dye-yav-gRVAL7sIkuVOmJpk6k6rZ-Qg-o09iSqUuXd3D5TvnwCHkEtgAGOPXslDVgDMuGABER6QHIYSeYDw-Pmh4PiVnzq0ZgygSfo-8DOmy1m9onSzprG7QKpnrTj82Vja4aumollmp6xVdlt3r-_PrwWRb19AJlnTaZlYXjipj6eijsVghHW10gbbqIm606fCFqXVjbJdwTk6ULB1e_N4-WY5HT7dTb34_md0O514ugijyJAQRKhB-ngADP8YsZFnAcu5HivuJyIpA5aooOErgGKiAR-ALHiuBDGMWij652udurHndomvStdnauqtMeSziIEySIOmowZ7KrXHOoko3VlfStimwdDdouhs0PQzaGZK94V2X2P5Dp8O78eLP-wPd_nws</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Zibi</creator><creator>Wang, Ding</creator><creator>Liu, Dong</creator><creator>Han, Xiang</creator><creator>Liu, Xiaoxu</creator><creator>Torun, Hamdi</creator><creator>Guo, Zhanhu</creator><creator>Duan, Sidi</creator><creator>He, Ximin</creator><creator>Zhang, Xuehua</creator><creator>Xu, Ben Bin</creator><creator>Chen, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid></search><sort><creationdate>20230701</creationdate><title>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</title><author>Wang, Zibi ; Wang, Ding ; Liu, Dong ; Han, Xiang ; Liu, Xiaoxu ; Torun, Hamdi ; Guo, Zhanhu ; Duan, Sidi ; He, Ximin ; Zhang, Xuehua ; Xu, Ben Bin ; Chen, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-a157ef134c910148eb60b50c247f2493bd5fcfdd2ea12e5f52714328f3e0e8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Elastomers</topic><topic>Face recognition</topic><topic>gel hybrids</topic><topic>Gelatin</topic><topic>Hybrid systems</topic><topic>Hydrogels</topic><topic>interface engineering</topic><topic>Materials science</topic><topic>mechano‐sensing</topic><topic>Monitoring</topic><topic>Signal quality</topic><topic>strain sensors</topic><topic>Toughness</topic><topic>ultra‐stretchable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zibi</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaoxu</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><creatorcontrib>Duan, Sidi</creatorcontrib><creatorcontrib>He, Ximin</creatorcontrib><creatorcontrib>Zhang, Xuehua</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zibi</au><au>Wang, Ding</au><au>Liu, Dong</au><au>Han, Xiang</au><au>Liu, Xiaoxu</au><au>Torun, Hamdi</au><au>Guo, Zhanhu</au><au>Duan, Sidi</au><au>He, Ximin</au><au>Zhang, Xuehua</au><au>Xu, Ben Bin</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring</atitle><jtitle>Advanced functional materials</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>29</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired. This study demonstrates a surfactant mediated interfacial chemistry to achieve seamless and tough interfaces in soft multi‐layer structures, which inspires a series of ultra‐robust gel hybrid based mechano‐sensors for epidermal bio‐monitoring in a wide range of conditions, i.e., open air, underwater, various solvents, and temperatures.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202301117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-07, Vol.33 (29), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2838569959
source Wiley Online Library All Journals
subjects Elastomers
Face recognition
gel hybrids
Gelatin
Hybrid systems
Hydrogels
interface engineering
Materials science
mechano‐sensing
Monitoring
Signal quality
strain sensors
Toughness
ultra‐stretchable
title A Universal Interfacial Strategy Enabling Ultra‐Robust Gel Hybrids for Extreme Epidermal Bio‐Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Interfacial%20Strategy%20Enabling%20Ultra%E2%80%90Robust%20Gel%20Hybrids%20for%20Extreme%20Epidermal%20Bio%E2%80%90Monitoring&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Zibi&rft.date=2023-07-01&rft.volume=33&rft.issue=29&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202301117&rft_dat=%3Cproquest_cross%3E2838569959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838569959&rft_id=info:pmid/&rfr_iscdi=true