Optimal cascaded control of mobile manipulators

In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-04, Vol.96 (2), p.1367-1389
1. Verfasser: Galicki, Mirosław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 2
container_start_page 1367
container_title Nonlinear dynamics
container_volume 96
creator Galicki, Mirosław
description In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.
doi_str_mv 10.1007/s11071-019-04860-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838455979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838455979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJJJuPoxS1QqEXhd5CNs1Ky3azJtuD_97oCt48zeV9n5l5CLllcM8A1CIzBopRYIaC0BKoOiMzVitOUZrtOZmBQUHBwPaSXOV8AACOoGdksRnG_dF1lXfZu13YVT72Y4pdFdvqGJt9F6qj6_fDqXNjTPmaXLSuy-Hmd87J29Pj63JF15vnl-XDmnou-UixLlcJ741iqkXNRS2CURqlb1TgHryUPDSAO8TQtg6YFw41EwYloDaCz8ndxB1S_DiFPNpDPKW-rLQFp0VdG2VKCqeUTzHnFFo7pPJN-rQM7LcYO4mxRYz9EWNVKfGplEu4fw_pD_1P6wsy_mQK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838455979</pqid></control><display><type>article</type><title>Optimal cascaded control of mobile manipulators</title><source>Springer Nature - Complete Springer Journals</source><creator>Galicki, Mirosław</creator><creatorcontrib>Galicki, Mirosław</creatorcontrib><description>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-04860-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Control algorithms ; Dynamical Systems ; End effectors ; Engineering ; Kinematics ; Manipulators ; Mechanical Engineering ; Optimal control ; Original Paper ; Robot arms ; Task space ; Tracking errors ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-04, Vol.96 (2), p.1367-1389</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</citedby><cites>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-04860-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-04860-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Galicki, Mirosław</creatorcontrib><title>Optimal cascaded control of mobile manipulators</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Dynamical Systems</subject><subject>End effectors</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Optimal control</subject><subject>Original Paper</subject><subject>Robot arms</subject><subject>Task space</subject><subject>Tracking errors</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJJJuPoxS1QqEXhd5CNs1Ky3azJtuD_97oCt48zeV9n5l5CLllcM8A1CIzBopRYIaC0BKoOiMzVitOUZrtOZmBQUHBwPaSXOV8AACOoGdksRnG_dF1lXfZu13YVT72Y4pdFdvqGJt9F6qj6_fDqXNjTPmaXLSuy-Hmd87J29Pj63JF15vnl-XDmnou-UixLlcJ741iqkXNRS2CURqlb1TgHryUPDSAO8TQtg6YFw41EwYloDaCz8ndxB1S_DiFPNpDPKW-rLQFp0VdG2VKCqeUTzHnFFo7pPJN-rQM7LcYO4mxRYz9EWNVKfGplEu4fw_pD_1P6wsy_mQK</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Galicki, Mirosław</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190401</creationdate><title>Optimal cascaded control of mobile manipulators</title><author>Galicki, Mirosław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Dynamical Systems</topic><topic>End effectors</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Optimal control</topic><topic>Original Paper</topic><topic>Robot arms</topic><topic>Task space</topic><topic>Tracking errors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galicki, Mirosław</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galicki, Mirosław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal cascaded control of mobile manipulators</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>96</volume><issue>2</issue><spage>1367</spage><epage>1389</epage><pages>1367-1389</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-04860-7</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-04, Vol.96 (2), p.1367-1389
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2838455979
source Springer Nature - Complete Springer Journals
subjects Algorithms
Automotive Engineering
Classical Mechanics
Control
Control algorithms
Dynamical Systems
End effectors
Engineering
Kinematics
Manipulators
Mechanical Engineering
Optimal control
Original Paper
Robot arms
Task space
Tracking errors
Vibration
title Optimal cascaded control of mobile manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20cascaded%20control%20of%20mobile%20manipulators&rft.jtitle=Nonlinear%20dynamics&rft.au=Galicki,%20Miros%C5%82aw&rft.date=2019-04-01&rft.volume=96&rft.issue=2&rft.spage=1367&rft.epage=1389&rft.pages=1367-1389&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-04860-7&rft_dat=%3Cproquest_cross%3E2838455979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838455979&rft_id=info:pmid/&rfr_iscdi=true