Optimal cascaded control of mobile manipulators
In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We p...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-04, Vol.96 (2), p.1367-1389 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1389 |
---|---|
container_issue | 2 |
container_start_page | 1367 |
container_title | Nonlinear dynamics |
container_volume | 96 |
creator | Galicki, Mirosław |
description | In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function. |
doi_str_mv | 10.1007/s11071-019-04860-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838455979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838455979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJJJuPoxS1QqEXhd5CNs1Ky3azJtuD_97oCt48zeV9n5l5CLllcM8A1CIzBopRYIaC0BKoOiMzVitOUZrtOZmBQUHBwPaSXOV8AACOoGdksRnG_dF1lXfZu13YVT72Y4pdFdvqGJt9F6qj6_fDqXNjTPmaXLSuy-Hmd87J29Pj63JF15vnl-XDmnou-UixLlcJ741iqkXNRS2CURqlb1TgHryUPDSAO8TQtg6YFw41EwYloDaCz8ndxB1S_DiFPNpDPKW-rLQFp0VdG2VKCqeUTzHnFFo7pPJN-rQM7LcYO4mxRYz9EWNVKfGplEu4fw_pD_1P6wsy_mQK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838455979</pqid></control><display><type>article</type><title>Optimal cascaded control of mobile manipulators</title><source>Springer Nature - Complete Springer Journals</source><creator>Galicki, Mirosław</creator><creatorcontrib>Galicki, Mirosław</creatorcontrib><description>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-04860-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Control algorithms ; Dynamical Systems ; End effectors ; Engineering ; Kinematics ; Manipulators ; Mechanical Engineering ; Optimal control ; Original Paper ; Robot arms ; Task space ; Tracking errors ; Vibration</subject><ispartof>Nonlinear dynamics, 2019-04, Vol.96 (2), p.1367-1389</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</citedby><cites>FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-04860-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-04860-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Galicki, Mirosław</creatorcontrib><title>Optimal cascaded control of mobile manipulators</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Dynamical Systems</subject><subject>End effectors</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Optimal control</subject><subject>Original Paper</subject><subject>Robot arms</subject><subject>Task space</subject><subject>Tracking errors</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59jJJJuPoxS1QqEXhd5CNs1Ky3azJtuD_97oCt48zeV9n5l5CLllcM8A1CIzBopRYIaC0BKoOiMzVitOUZrtOZmBQUHBwPaSXOV8AACOoGdksRnG_dF1lXfZu13YVT72Y4pdFdvqGJt9F6qj6_fDqXNjTPmaXLSuy-Hmd87J29Pj63JF15vnl-XDmnou-UixLlcJ741iqkXNRS2CURqlb1TgHryUPDSAO8TQtg6YFw41EwYloDaCz8ndxB1S_DiFPNpDPKW-rLQFp0VdG2VKCqeUTzHnFFo7pPJN-rQM7LcYO4mxRYz9EWNVKfGplEu4fw_pD_1P6wsy_mQK</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Galicki, Mirosław</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190401</creationdate><title>Optimal cascaded control of mobile manipulators</title><author>Galicki, Mirosław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-250074cc9717f283454e97826cb7e3c0c663eb02d22effa01c4a2814926028943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Dynamical Systems</topic><topic>End effectors</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Optimal control</topic><topic>Original Paper</topic><topic>Robot arms</topic><topic>Task space</topic><topic>Tracking errors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galicki, Mirosław</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galicki, Mirosław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal cascaded control of mobile manipulators</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>96</volume><issue>2</issue><spage>1367</spage><epage>1389</epage><pages>1367-1389</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this study, the solution to the kinematically optimal control problem of the mobile manipulators is proposed. Both dynamic equations are assumed to be uncertain, and globally unbounded disturbances are allowed to act on the mobile manipulator when tracking the trajectory by the end effector. We propose a computationally efficient class of cascaded control algorithms, which are based on an extended Jacobian transpose matrix. Our controllers involve two new non-singular terminal sliding mode manifolds defined by nonlinear integral equalities of both the second order with respect to the task space tracking error and the first order with respect to reduced mobile manipulator acceleration. Using the Lyapunov stability theory, we prove that the proposed Jacobian transpose cascaded control schemes are finite time stable provided that some practically reasonable assumptions are fulfilled during the mobile manipulator movement. The numerical examples carried out for mobile manipulators [consisting of a non-holonomic platform of type (2, 0) and holonomic manipulators of 2 and 3 revolute kinematic pairs], which operate in two-dimensional and three-dimensional work spaces, respectively, illustrate both the trajectory tracking performance of the proposed control schemes and simultaneously their minimising property for some practically useful objective function.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-04860-7</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2019-04, Vol.96 (2), p.1367-1389 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2838455979 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Automotive Engineering Classical Mechanics Control Control algorithms Dynamical Systems End effectors Engineering Kinematics Manipulators Mechanical Engineering Optimal control Original Paper Robot arms Task space Tracking errors Vibration |
title | Optimal cascaded control of mobile manipulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20cascaded%20control%20of%20mobile%20manipulators&rft.jtitle=Nonlinear%20dynamics&rft.au=Galicki,%20Miros%C5%82aw&rft.date=2019-04-01&rft.volume=96&rft.issue=2&rft.spage=1367&rft.epage=1389&rft.pages=1367-1389&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-04860-7&rft_dat=%3Cproquest_cross%3E2838455979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838455979&rft_id=info:pmid/&rfr_iscdi=true |