Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation

The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Qiu, Jingna, Wilm, Frauke, Öttl, Mathias, Schlereth, Maja, Liu, Chang, Heimann, Tobias, Aubreville, Marc, Breininger, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qiu, Jingna
Wilm, Frauke
Öttl, Mathias
Schlereth, Maja
Liu, Chang
Heimann, Tobias
Aubreville, Marc
Breininger, Katharina
description The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at https://github.com/DeepMicroscopy/AdaptiveRegionSelection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838442650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838442650</sourcerecordid><originalsourceid>FETCH-proquest_journals_28384426503</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoW1qbmrURR0FUGeSdDf9dkbrbNnj-NHqCr78A53wIFlLFdlMWUrlDoXEcIoemeJgkLUJk3fPDyDfgGQhqNC1BQ-5laY3Fef90VuNVSCyw1fjyNAlwo2QC-9FxMDD3XXtYTiB605_N9g5YtVw7C367R9nS8H87RYM1rBOerzoxWT6qiGcvimKYJYf9VH0xgQWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838442650</pqid></control><display><type>article</type><title>Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation</title><source>Free E- Journals</source><creator>Qiu, Jingna ; Wilm, Frauke ; Öttl, Mathias ; Schlereth, Maja ; Liu, Chang ; Heimann, Tobias ; Aubreville, Marc ; Breininger, Katharina</creator><creatorcontrib>Qiu, Jingna ; Wilm, Frauke ; Öttl, Mathias ; Schlereth, Maja ; Liu, Chang ; Heimann, Tobias ; Aubreville, Marc ; Breininger, Katharina</creatorcontrib><description>The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at https://github.com/DeepMicroscopy/AdaptiveRegionSelection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active learning ; Annotations ; Datasets ; Image annotation ; Image segmentation ; Learning ; Medical imaging ; Optimization ; Semantic segmentation ; Source code ; Training</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qiu, Jingna</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Öttl, Mathias</creatorcontrib><creatorcontrib>Schlereth, Maja</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Heimann, Tobias</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Breininger, Katharina</creatorcontrib><title>Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation</title><title>arXiv.org</title><description>The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at https://github.com/DeepMicroscopy/AdaptiveRegionSelection.</description><subject>Active learning</subject><subject>Annotations</subject><subject>Datasets</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Medical imaging</subject><subject>Optimization</subject><subject>Semantic segmentation</subject><subject>Source code</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoW1qbmrURR0FUGeSdDf9dkbrbNnj-NHqCr78A53wIFlLFdlMWUrlDoXEcIoemeJgkLUJk3fPDyDfgGQhqNC1BQ-5laY3Fef90VuNVSCyw1fjyNAlwo2QC-9FxMDD3XXtYTiB605_N9g5YtVw7C367R9nS8H87RYM1rBOerzoxWT6qiGcvimKYJYf9VH0xgQWg</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Qiu, Jingna</creator><creator>Wilm, Frauke</creator><creator>Öttl, Mathias</creator><creator>Schlereth, Maja</creator><creator>Liu, Chang</creator><creator>Heimann, Tobias</creator><creator>Aubreville, Marc</creator><creator>Breininger, Katharina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230714</creationdate><title>Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation</title><author>Qiu, Jingna ; Wilm, Frauke ; Öttl, Mathias ; Schlereth, Maja ; Liu, Chang ; Heimann, Tobias ; Aubreville, Marc ; Breininger, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28384426503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active learning</topic><topic>Annotations</topic><topic>Datasets</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Medical imaging</topic><topic>Optimization</topic><topic>Semantic segmentation</topic><topic>Source code</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Jingna</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Öttl, Mathias</creatorcontrib><creatorcontrib>Schlereth, Maja</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Heimann, Tobias</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Breininger, Katharina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Jingna</au><au>Wilm, Frauke</au><au>Öttl, Mathias</au><au>Schlereth, Maja</au><au>Liu, Chang</au><au>Heimann, Tobias</au><au>Aubreville, Marc</au><au>Breininger, Katharina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at https://github.com/DeepMicroscopy/AdaptiveRegionSelection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2838442650
source Free E- Journals
subjects Active learning
Annotations
Datasets
Image annotation
Image segmentation
Learning
Medical imaging
Optimization
Semantic segmentation
Source code
Training
title Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Region%20Selection%20for%20Active%20Learning%20in%20Whole%20Slide%20Image%20Semantic%20Segmentation&rft.jtitle=arXiv.org&rft.au=Qiu,%20Jingna&rft.date=2023-07-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838442650%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838442650&rft_id=info:pmid/&rfr_iscdi=true