IR Design for Application-Specific Natural Language: A Case Study on Traffic Data
In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possib...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hu, Wei Wang, Xuhong Wang, Ding Yao, Shengyue Mao, Zuqiu Li, Li Wang, Fei-Yue Lin, Yilun |
description | In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838442494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838442494</sourcerecordid><originalsourceid>FETCH-proquest_journals_28384424943</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7oLNg2y7qJFQURlN7lxaZMZFv7c-jbV9AH6PQcnt-ERJSxVZJzSmckdm5I05SuNzTLWERu5zvshZO9gk5bKIwZZYteapVURrSyky1c0QeLI1xQ9QF7sYMCSnQCKh8eL9AKaovdV-7R44JMOxydiH-dk-XxUJenxFj9DML5ZtDBqs9qaM5yzinfcvafegPUPD26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838442494</pqid></control><display><type>article</type><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><source>Free E- Journals</source><creator>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</creator><creatorcontrib>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</creatorcontrib><description>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Applications programs ; Data processing ; Domain specific languages ; Format ; Natural language (computers) ; Scale models ; Standard data ; Traffic information ; Transportation industry</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Xuhong</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yao, Shengyue</creatorcontrib><creatorcontrib>Mao, Zuqiu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><title>arXiv.org</title><description>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</description><subject>Applications programs</subject><subject>Data processing</subject><subject>Domain specific languages</subject><subject>Format</subject><subject>Natural language (computers)</subject><subject>Scale models</subject><subject>Standard data</subject><subject>Traffic information</subject><subject>Transportation industry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7oLNg2y7qJFQURlN7lxaZMZFv7c-jbV9AH6PQcnt-ERJSxVZJzSmckdm5I05SuNzTLWERu5zvshZO9gk5bKIwZZYteapVURrSyky1c0QeLI1xQ9QF7sYMCSnQCKh8eL9AKaovdV-7R44JMOxydiH-dk-XxUJenxFj9DML5ZtDBqs9qaM5yzinfcvafegPUPD26</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Hu, Wei</creator><creator>Wang, Xuhong</creator><creator>Wang, Ding</creator><creator>Yao, Shengyue</creator><creator>Mao, Zuqiu</creator><creator>Li, Li</creator><creator>Wang, Fei-Yue</creator><creator>Lin, Yilun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230713</creationdate><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><author>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28384424943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications programs</topic><topic>Data processing</topic><topic>Domain specific languages</topic><topic>Format</topic><topic>Natural language (computers)</topic><topic>Scale models</topic><topic>Standard data</topic><topic>Traffic information</topic><topic>Transportation industry</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Xuhong</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yao, Shengyue</creatorcontrib><creatorcontrib>Mao, Zuqiu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wei</au><au>Wang, Xuhong</au><au>Wang, Ding</au><au>Yao, Shengyue</au><au>Mao, Zuqiu</au><au>Li, Li</au><au>Wang, Fei-Yue</au><au>Lin, Yilun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</atitle><jtitle>arXiv.org</jtitle><date>2023-07-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2838442494 |
source | Free E- Journals |
subjects | Applications programs Data processing Domain specific languages Format Natural language (computers) Scale models Standard data Traffic information Transportation industry |
title | IR Design for Application-Specific Natural Language: A Case Study on Traffic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=IR%20Design%20for%20Application-Specific%20Natural%20Language:%20A%20Case%20Study%20on%20Traffic%20Data&rft.jtitle=arXiv.org&rft.au=Hu,%20Wei&rft.date=2023-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838442494%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838442494&rft_id=info:pmid/&rfr_iscdi=true |