IR Design for Application-Specific Natural Language: A Case Study on Traffic Data

In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Hu, Wei, Wang, Xuhong, Wang, Ding, Yao, Shengyue, Mao, Zuqiu, Li, Li, Wang, Fei-Yue, Lin, Yilun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hu, Wei
Wang, Xuhong
Wang, Ding
Yao, Shengyue
Mao, Zuqiu
Li, Li
Wang, Fei-Yue
Lin, Yilun
description In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838442494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838442494</sourcerecordid><originalsourceid>FETCH-proquest_journals_28384424943</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7oLNg2y7qJFQURlN7lxaZMZFv7c-jbV9AH6PQcnt-ERJSxVZJzSmckdm5I05SuNzTLWERu5zvshZO9gk5bKIwZZYteapVURrSyky1c0QeLI1xQ9QF7sYMCSnQCKh8eL9AKaovdV-7R44JMOxydiH-dk-XxUJenxFj9DML5ZtDBqs9qaM5yzinfcvafegPUPD26</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838442494</pqid></control><display><type>article</type><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><source>Free E- Journals</source><creator>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</creator><creatorcontrib>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</creatorcontrib><description>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Applications programs ; Data processing ; Domain specific languages ; Format ; Natural language (computers) ; Scale models ; Standard data ; Traffic information ; Transportation industry</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Xuhong</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yao, Shengyue</creatorcontrib><creatorcontrib>Mao, Zuqiu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><title>arXiv.org</title><description>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</description><subject>Applications programs</subject><subject>Data processing</subject><subject>Domain specific languages</subject><subject>Format</subject><subject>Natural language (computers)</subject><subject>Scale models</subject><subject>Standard data</subject><subject>Traffic information</subject><subject>Transportation industry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7oLNg2y7qJFQURlN7lxaZMZFv7c-jbV9AH6PQcnt-ERJSxVZJzSmckdm5I05SuNzTLWERu5zvshZO9gk5bKIwZZYteapVURrSyky1c0QeLI1xQ9QF7sYMCSnQCKh8eL9AKaovdV-7R44JMOxydiH-dk-XxUJenxFj9DML5ZtDBqs9qaM5yzinfcvafegPUPD26</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Hu, Wei</creator><creator>Wang, Xuhong</creator><creator>Wang, Ding</creator><creator>Yao, Shengyue</creator><creator>Mao, Zuqiu</creator><creator>Li, Li</creator><creator>Wang, Fei-Yue</creator><creator>Lin, Yilun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230713</creationdate><title>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</title><author>Hu, Wei ; Wang, Xuhong ; Wang, Ding ; Yao, Shengyue ; Mao, Zuqiu ; Li, Li ; Wang, Fei-Yue ; Lin, Yilun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28384424943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications programs</topic><topic>Data processing</topic><topic>Domain specific languages</topic><topic>Format</topic><topic>Natural language (computers)</topic><topic>Scale models</topic><topic>Standard data</topic><topic>Traffic information</topic><topic>Transportation industry</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Xuhong</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yao, Shengyue</creatorcontrib><creatorcontrib>Mao, Zuqiu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wei</au><au>Wang, Xuhong</au><au>Wang, Ding</au><au>Yao, Shengyue</au><au>Mao, Zuqiu</au><au>Li, Li</au><au>Wang, Fei-Yue</au><au>Lin, Yilun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>IR Design for Application-Specific Natural Language: A Case Study on Traffic Data</atitle><jtitle>arXiv.org</jtitle><date>2023-07-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In the realm of software applications in the transportation industry, Domain-Specific Languages (DSLs) have enjoyed widespread adoption due to their ease of use and various other benefits. With the ceaseless progress in computer performance and the rapid development of large-scale models, the possibility of programming using natural language in specified applications - referred to as Application-Specific Natural Language (ASNL) - has emerged. ASNL exhibits greater flexibility and freedom, which, in turn, leads to an increase in computational complexity for parsing and a decrease in processing performance. To tackle this issue, our paper advances a design for an intermediate representation (IR) that caters to ASNL and can uniformly process transportation data into graph data format, improving data processing performance. Experimental comparisons reveal that in standard data query operations, our proposed IR design can achieve a speed improvement of over forty times compared to direct usage of standard XML format data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2838442494
source Free E- Journals
subjects Applications programs
Data processing
Domain specific languages
Format
Natural language (computers)
Scale models
Standard data
Traffic information
Transportation industry
title IR Design for Application-Specific Natural Language: A Case Study on Traffic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=IR%20Design%20for%20Application-Specific%20Natural%20Language:%20A%20Case%20Study%20on%20Traffic%20Data&rft.jtitle=arXiv.org&rft.au=Hu,%20Wei&rft.date=2023-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838442494%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838442494&rft_id=info:pmid/&rfr_iscdi=true