Blind image quality assessment based on the multiscale and dual‐domains features fusion

Image quality assessment is to simulate subjective human visual perception and realize image quality inference automatically. Although deep neural networks have achieved great success, the majority of them do not fully consider perception characteristics. Therefore, according to the human visual sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2023-08, Vol.35 (18), p.n/a
Hauptverfasser: Lu, Yaxuan, Li, Weijun, Ning, Xin, Dong, Xiaoli, Zhang, Liping, Sun, Linjun, Cheng, Chuantong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Concurrency and computation
container_volume 35
creator Lu, Yaxuan
Li, Weijun
Ning, Xin
Dong, Xiaoli
Zhang, Liping
Sun, Linjun
Cheng, Chuantong
description Image quality assessment is to simulate subjective human visual perception and realize image quality inference automatically. Although deep neural networks have achieved great success, the majority of them do not fully consider perception characteristics. Therefore, according to the human visual scale characteristics, we proposed an image quality assessment algorithm based on multiscale and dual domains fusion. Firstly, the original image and its phase congruency respectively input into two branches, feature pyramid and channel attention mechanism are adopted to extract multiscale features. After that, bilinear pool is used to aggregate the spatial and frequency domain characteristics of the corresponding scales, and allows arbitrary scale input to ensure that the features are extracted from the inherent quality images. Finally, the single quality score is obtained through learned weights of each scale. Comparative experiments between our approach and state‐of‐the‐art are conducted on five public databases, the results demonstrate that the proposed algorithm is not only robust to different types and across database, but also sensitive to scale.
doi_str_mv 10.1002/cpe.6177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2838116088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838116088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-39e75f29110723f7a060a5d808cdf2c819c7f005b971e71cccfeb6ea0efc98bc3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSjm0SOyNU5SJVggEGJstxjiFVLq2dCGXjEXhGngSXIjam8w_fuX2EnDKYMQB-Ydc4y5iUe2TCUsETyMTl_l_m2SE5CmEFwBgINiEv13XVlrRqzCvSzWDqqh-pCQFDaLDtaWEClrRraf-GtBnqvgrW1EhNbCoj_vXxWXaNqdpAHZp-8BjDEKquPSYHztQBT37rlDzfLJ7md8ny4fZ-frVMLM-FTESOMnU8j_dILpw0kIFJSwXKlo5bxXIrHUBa5JKhZNZah0WGBtDZXBVWTMnZbu7ad5sBQ69X3eDbuFJzJRRjGSgVqfMdZX0Xgken1z4-7UfNQG_F6ShOb8VFNNmh71WN47-cnj8ufvhvmoRwlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838116088</pqid></control><display><type>article</type><title>Blind image quality assessment based on the multiscale and dual‐domains features fusion</title><source>Wiley Online Library All Journals</source><creator>Lu, Yaxuan ; Li, Weijun ; Ning, Xin ; Dong, Xiaoli ; Zhang, Liping ; Sun, Linjun ; Cheng, Chuantong</creator><creatorcontrib>Lu, Yaxuan ; Li, Weijun ; Ning, Xin ; Dong, Xiaoli ; Zhang, Liping ; Sun, Linjun ; Cheng, Chuantong</creatorcontrib><description>Image quality assessment is to simulate subjective human visual perception and realize image quality inference automatically. Although deep neural networks have achieved great success, the majority of them do not fully consider perception characteristics. Therefore, according to the human visual scale characteristics, we proposed an image quality assessment algorithm based on multiscale and dual domains fusion. Firstly, the original image and its phase congruency respectively input into two branches, feature pyramid and channel attention mechanism are adopted to extract multiscale features. After that, bilinear pool is used to aggregate the spatial and frequency domain characteristics of the corresponding scales, and allows arbitrary scale input to ensure that the features are extracted from the inherent quality images. Finally, the single quality score is obtained through learned weights of each scale. Comparative experiments between our approach and state‐of‐the‐art are conducted on five public databases, the results demonstrate that the proposed algorithm is not only robust to different types and across database, but also sensitive to scale.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6177</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Image quality ; image quality assessment ; multiscale features ; original scale input ; phase congruency ; Quality assessment ; Visual perception</subject><ispartof>Concurrency and computation, 2023-08, Vol.35 (18), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-39e75f29110723f7a060a5d808cdf2c819c7f005b971e71cccfeb6ea0efc98bc3</citedby><cites>FETCH-LOGICAL-c2937-39e75f29110723f7a060a5d808cdf2c819c7f005b971e71cccfeb6ea0efc98bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lu, Yaxuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Dong, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Cheng, Chuantong</creatorcontrib><title>Blind image quality assessment based on the multiscale and dual‐domains features fusion</title><title>Concurrency and computation</title><description>Image quality assessment is to simulate subjective human visual perception and realize image quality inference automatically. Although deep neural networks have achieved great success, the majority of them do not fully consider perception characteristics. Therefore, according to the human visual scale characteristics, we proposed an image quality assessment algorithm based on multiscale and dual domains fusion. Firstly, the original image and its phase congruency respectively input into two branches, feature pyramid and channel attention mechanism are adopted to extract multiscale features. After that, bilinear pool is used to aggregate the spatial and frequency domain characteristics of the corresponding scales, and allows arbitrary scale input to ensure that the features are extracted from the inherent quality images. Finally, the single quality score is obtained through learned weights of each scale. Comparative experiments between our approach and state‐of‐the‐art are conducted on five public databases, the results demonstrate that the proposed algorithm is not only robust to different types and across database, but also sensitive to scale.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Image quality</subject><subject>image quality assessment</subject><subject>multiscale features</subject><subject>original scale input</subject><subject>phase congruency</subject><subject>Quality assessment</subject><subject>Visual perception</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUg8QiWWFhSjm0SOyNU5SJVggEGJstxjiFVLq2dCGXjEXhGngSXIjam8w_fuX2EnDKYMQB-Ydc4y5iUe2TCUsETyMTl_l_m2SE5CmEFwBgINiEv13XVlrRqzCvSzWDqqh-pCQFDaLDtaWEClrRraf-GtBnqvgrW1EhNbCoj_vXxWXaNqdpAHZp-8BjDEKquPSYHztQBT37rlDzfLJ7md8ny4fZ-frVMLM-FTESOMnU8j_dILpw0kIFJSwXKlo5bxXIrHUBa5JKhZNZah0WGBtDZXBVWTMnZbu7ad5sBQ69X3eDbuFJzJRRjGSgVqfMdZX0Xgken1z4-7UfNQG_F6ShOb8VFNNmh71WN47-cnj8ufvhvmoRwlw</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Lu, Yaxuan</creator><creator>Li, Weijun</creator><creator>Ning, Xin</creator><creator>Dong, Xiaoli</creator><creator>Zhang, Liping</creator><creator>Sun, Linjun</creator><creator>Cheng, Chuantong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230815</creationdate><title>Blind image quality assessment based on the multiscale and dual‐domains features fusion</title><author>Lu, Yaxuan ; Li, Weijun ; Ning, Xin ; Dong, Xiaoli ; Zhang, Liping ; Sun, Linjun ; Cheng, Chuantong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-39e75f29110723f7a060a5d808cdf2c819c7f005b971e71cccfeb6ea0efc98bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Image quality</topic><topic>image quality assessment</topic><topic>multiscale features</topic><topic>original scale input</topic><topic>phase congruency</topic><topic>Quality assessment</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yaxuan</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ning, Xin</creatorcontrib><creatorcontrib>Dong, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Sun, Linjun</creatorcontrib><creatorcontrib>Cheng, Chuantong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yaxuan</au><au>Li, Weijun</au><au>Ning, Xin</au><au>Dong, Xiaoli</au><au>Zhang, Liping</au><au>Sun, Linjun</au><au>Cheng, Chuantong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind image quality assessment based on the multiscale and dual‐domains features fusion</atitle><jtitle>Concurrency and computation</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>35</volume><issue>18</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Image quality assessment is to simulate subjective human visual perception and realize image quality inference automatically. Although deep neural networks have achieved great success, the majority of them do not fully consider perception characteristics. Therefore, according to the human visual scale characteristics, we proposed an image quality assessment algorithm based on multiscale and dual domains fusion. Firstly, the original image and its phase congruency respectively input into two branches, feature pyramid and channel attention mechanism are adopted to extract multiscale features. After that, bilinear pool is used to aggregate the spatial and frequency domain characteristics of the corresponding scales, and allows arbitrary scale input to ensure that the features are extracted from the inherent quality images. Finally, the single quality score is obtained through learned weights of each scale. Comparative experiments between our approach and state‐of‐the‐art are conducted on five public databases, the results demonstrate that the proposed algorithm is not only robust to different types and across database, but also sensitive to scale.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.6177</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2023-08, Vol.35 (18), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2838116088
source Wiley Online Library All Journals
subjects Algorithms
Artificial neural networks
Image quality
image quality assessment
multiscale features
original scale input
phase congruency
Quality assessment
Visual perception
title Blind image quality assessment based on the multiscale and dual‐domains features fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20image%20quality%20assessment%20based%20on%20the%20multiscale%20and%20dual%E2%80%90domains%20features%20fusion&rft.jtitle=Concurrency%20and%20computation&rft.au=Lu,%20Yaxuan&rft.date=2023-08-15&rft.volume=35&rft.issue=18&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6177&rft_dat=%3Cproquest_cross%3E2838116088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838116088&rft_id=info:pmid/&rfr_iscdi=true