Cascaded deep residual learning network for single image dehazing
Convolutional neural networks (CNNs) have achieved significant success in the field of single image dehazing. However, most existing deep dehazing models are based on atmospheric scattering model, which have high accumulate errors. Thus, Cascaded Deep Residual Learning Network for Single Image Dehaz...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-08, Vol.29 (4), p.2037-2048 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2048 |
---|---|
container_issue | 4 |
container_start_page | 2037 |
container_title | Multimedia systems |
container_volume | 29 |
creator | Yang, Yizhong Hou, Ce Huang, Haixia Zhang, Zhang Xie, Guangjun |
description | Convolutional neural networks (CNNs) have achieved significant success in the field of single image dehazing. However, most existing deep dehazing models are based on atmospheric scattering model, which have high accumulate errors. Thus, Cascaded Deep Residual Learning Network for Single Image Dehazing (CDRLN) with encoder-decoder structure is proposed, which can directly restore the clean image from hazy image. The proposed algorithm consists of a primary network which predicts a residual map based on the entire image, and a sub-network which restores the haze-free image based on the residual image and the original hazy image. The encoder part of CDRLN embeds a context feature extraction module to fuse information effectively. In addition, the two-stage cascaded strategy can avoid feature dilution and restore detailed information, which reduces the color distortion in the dehazing process and generates a more natural, more real and less artifacts dehazed image. Experimental results demonstrate that the CDRLN surpasses previous state-of-the-art single image dehazing methods by a large margin on the synthetic datasets as well as real-world hazy images, and the visual effect of dehazed image is better. |
doi_str_mv | 10.1007/s00530-023-01087-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2837397150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837397150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6678b3ba88b3f4332aa0864efc0b412b8344d78ab7839d9602055a7dfd14f5203</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJJm3S47L4Dxa86DmkTbJ2rW1Ndln005u1gjcvM_D4vTfDI-SSwzUHUDcJoEBgIJABB63Y_ojMuETBuNbimMygkoLJqhSn5CylDQBXJcKMLJY2NdZ5R533I40-tW5nO9p5G_u2X9Peb_dDfKNhiDRlofO0fbdrn_lX-5WFc3ISbJf8xe-ek5e72-flA1s93T8uFyvWIK-2rCyVrrG2Os8gEYW1oEvpQwO15KLWKKVT2tZKY-WqEgQUhVUuOC5DIQDn5GrKHePwsfNpazbDLvb5pBEaFVaKFwdKTFQTh5SiD2aM-d_4aTiYQ1VmqsrkqsxPVWafTTiZUob7tY9_0f-4vgE31Wtk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837397150</pqid></control><display><type>article</type><title>Cascaded deep residual learning network for single image dehazing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Yizhong ; Hou, Ce ; Huang, Haixia ; Zhang, Zhang ; Xie, Guangjun</creator><creatorcontrib>Yang, Yizhong ; Hou, Ce ; Huang, Haixia ; Zhang, Zhang ; Xie, Guangjun</creatorcontrib><description>Convolutional neural networks (CNNs) have achieved significant success in the field of single image dehazing. However, most existing deep dehazing models are based on atmospheric scattering model, which have high accumulate errors. Thus, Cascaded Deep Residual Learning Network for Single Image Dehazing (CDRLN) with encoder-decoder structure is proposed, which can directly restore the clean image from hazy image. The proposed algorithm consists of a primary network which predicts a residual map based on the entire image, and a sub-network which restores the haze-free image based on the residual image and the original hazy image. The encoder part of CDRLN embeds a context feature extraction module to fuse information effectively. In addition, the two-stage cascaded strategy can avoid feature dilution and restore detailed information, which reduces the color distortion in the dehazing process and generates a more natural, more real and less artifacts dehazed image. Experimental results demonstrate that the CDRLN surpasses previous state-of-the-art single image dehazing methods by a large margin on the synthetic datasets as well as real-world hazy images, and the visual effect of dehazed image is better.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01087-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric models ; Atmospheric scattering ; Coders ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Dilution ; Encoders-Decoders ; Feature extraction ; Image restoration ; Learning ; Multimedia Information Systems ; Operating Systems ; Regular Paper ; Synthetic data ; Visual effects</subject><ispartof>Multimedia systems, 2023-08, Vol.29 (4), p.2037-2048</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6678b3ba88b3f4332aa0864efc0b412b8344d78ab7839d9602055a7dfd14f5203</citedby><cites>FETCH-LOGICAL-c319t-6678b3ba88b3f4332aa0864efc0b412b8344d78ab7839d9602055a7dfd14f5203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01087-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01087-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yang, Yizhong</creatorcontrib><creatorcontrib>Hou, Ce</creatorcontrib><creatorcontrib>Huang, Haixia</creatorcontrib><creatorcontrib>Zhang, Zhang</creatorcontrib><creatorcontrib>Xie, Guangjun</creatorcontrib><title>Cascaded deep residual learning network for single image dehazing</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Convolutional neural networks (CNNs) have achieved significant success in the field of single image dehazing. However, most existing deep dehazing models are based on atmospheric scattering model, which have high accumulate errors. Thus, Cascaded Deep Residual Learning Network for Single Image Dehazing (CDRLN) with encoder-decoder structure is proposed, which can directly restore the clean image from hazy image. The proposed algorithm consists of a primary network which predicts a residual map based on the entire image, and a sub-network which restores the haze-free image based on the residual image and the original hazy image. The encoder part of CDRLN embeds a context feature extraction module to fuse information effectively. In addition, the two-stage cascaded strategy can avoid feature dilution and restore detailed information, which reduces the color distortion in the dehazing process and generates a more natural, more real and less artifacts dehazed image. Experimental results demonstrate that the CDRLN surpasses previous state-of-the-art single image dehazing methods by a large margin on the synthetic datasets as well as real-world hazy images, and the visual effect of dehazed image is better.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>Atmospheric scattering</subject><subject>Coders</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Dilution</subject><subject>Encoders-Decoders</subject><subject>Feature extraction</subject><subject>Image restoration</subject><subject>Learning</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Regular Paper</subject><subject>Synthetic data</subject><subject>Visual effects</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJJm3S47L4Dxa86DmkTbJ2rW1Ndln005u1gjcvM_D4vTfDI-SSwzUHUDcJoEBgIJABB63Y_ojMuETBuNbimMygkoLJqhSn5CylDQBXJcKMLJY2NdZ5R533I40-tW5nO9p5G_u2X9Peb_dDfKNhiDRlofO0fbdrn_lX-5WFc3ISbJf8xe-ek5e72-flA1s93T8uFyvWIK-2rCyVrrG2Os8gEYW1oEvpQwO15KLWKKVT2tZKY-WqEgQUhVUuOC5DIQDn5GrKHePwsfNpazbDLvb5pBEaFVaKFwdKTFQTh5SiD2aM-d_4aTiYQ1VmqsrkqsxPVWafTTiZUob7tY9_0f-4vgE31Wtk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yang, Yizhong</creator><creator>Hou, Ce</creator><creator>Huang, Haixia</creator><creator>Zhang, Zhang</creator><creator>Xie, Guangjun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Cascaded deep residual learning network for single image dehazing</title><author>Yang, Yizhong ; Hou, Ce ; Huang, Haixia ; Zhang, Zhang ; Xie, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6678b3ba88b3f4332aa0864efc0b412b8344d78ab7839d9602055a7dfd14f5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>Atmospheric scattering</topic><topic>Coders</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Dilution</topic><topic>Encoders-Decoders</topic><topic>Feature extraction</topic><topic>Image restoration</topic><topic>Learning</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Regular Paper</topic><topic>Synthetic data</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yizhong</creatorcontrib><creatorcontrib>Hou, Ce</creatorcontrib><creatorcontrib>Huang, Haixia</creatorcontrib><creatorcontrib>Zhang, Zhang</creatorcontrib><creatorcontrib>Xie, Guangjun</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yizhong</au><au>Hou, Ce</au><au>Huang, Haixia</au><au>Zhang, Zhang</au><au>Xie, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascaded deep residual learning network for single image dehazing</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>29</volume><issue>4</issue><spage>2037</spage><epage>2048</epage><pages>2037-2048</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Convolutional neural networks (CNNs) have achieved significant success in the field of single image dehazing. However, most existing deep dehazing models are based on atmospheric scattering model, which have high accumulate errors. Thus, Cascaded Deep Residual Learning Network for Single Image Dehazing (CDRLN) with encoder-decoder structure is proposed, which can directly restore the clean image from hazy image. The proposed algorithm consists of a primary network which predicts a residual map based on the entire image, and a sub-network which restores the haze-free image based on the residual image and the original hazy image. The encoder part of CDRLN embeds a context feature extraction module to fuse information effectively. In addition, the two-stage cascaded strategy can avoid feature dilution and restore detailed information, which reduces the color distortion in the dehazing process and generates a more natural, more real and less artifacts dehazed image. Experimental results demonstrate that the CDRLN surpasses previous state-of-the-art single image dehazing methods by a large margin on the synthetic datasets as well as real-world hazy images, and the visual effect of dehazed image is better.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01087-w</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2023-08, Vol.29 (4), p.2037-2048 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2837397150 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Atmospheric models Atmospheric scattering Coders Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Dilution Encoders-Decoders Feature extraction Image restoration Learning Multimedia Information Systems Operating Systems Regular Paper Synthetic data Visual effects |
title | Cascaded deep residual learning network for single image dehazing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascaded%20deep%20residual%20learning%20network%20for%20single%20image%20dehazing&rft.jtitle=Multimedia%20systems&rft.au=Yang,%20Yizhong&rft.date=2023-08-01&rft.volume=29&rft.issue=4&rft.spage=2037&rft.epage=2048&rft.pages=2037-2048&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01087-w&rft_dat=%3Cproquest_cross%3E2837397150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837397150&rft_id=info:pmid/&rfr_iscdi=true |