Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer

The anionic polymerization of 1‐phosphaisoprene [Mes*P=C(Me)−CH=CH2 (E‐1)] affords poly(1‐phosphaisoprene) 2 in high yield (75 %). Concentrated solutions of polymer 2 (Mn=21,800 g mol−1; Đ=1.02) a P‐analogue of natural rubber, undergo gelation upon treatment with [Pd(cod)Cl2] (0.15 P equiv). Evidenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2023-07, Vol.26 (20), p.n/a
Hauptverfasser: Walsgrove, Henry T. G., Chowdhury, Khadiza (Rodella) K., Dabringhaus, Philipp, Patrick, Brian O., Gates, Derek P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title European journal of inorganic chemistry
container_volume 26
creator Walsgrove, Henry T. G.
Chowdhury, Khadiza (Rodella) K.
Dabringhaus, Philipp
Patrick, Brian O.
Gates, Derek P.
description The anionic polymerization of 1‐phosphaisoprene [Mes*P=C(Me)−CH=CH2 (E‐1)] affords poly(1‐phosphaisoprene) 2 in high yield (75 %). Concentrated solutions of polymer 2 (Mn=21,800 g mol−1; Đ=1.02) a P‐analogue of natural rubber, undergo gelation upon treatment with [Pd(cod)Cl2] (0.15 P equiv). Evidence for P‐coordination of 2 to PdII was obtained by 31P and 1H NMR spectroscopy. The gelation is reversed by the addition of PMe3 and the reformation of recoverable 2 along with [PdII−PMe3] complexes were confirmed by 31P NMR spectroscopy. The use of labile metal‐ligand bonds to reversibly form gels is unprecedented and has relevance to self‐healing materials. In contrast, coordination of 2 to [Pd(η3‐C3H5)(μ‐Cl)]2 affords the well‐defined complex 2 ⋅ [Pd(η3‐C3H5)Cl] which was characterized by 31P, 1H, 13C{1H} NMR spectroscopy and GPC. This polymer chemistry was complemented by detailed molecular model studies of the coordination chemistry of monomer 1‐phosphaisoprene E‐1 with [Pd(cod)Cl2] and [Pd(η3‐C3H5)(μ‐Cl)]2]. Palladium(II) complexes of phosphorus rubber [poly(1‐phopshaisoprene)] are disclosed. Addition of [Pd(cod)Cl2] to a solution of poly(1‐phosphaisoprene) resulted in gelation of the material which was reversed by the addition of a competing molecular phosphine ligand. By contrast, the macromolecular complex formed from the addition of [Pd(η3‐C3H5)(μ‐Cl)]2 to poly(1‐phospaisoprene) did not exhibit gelation. These results suggest cross‐linking of the polymer facilitates gel formation.
doi_str_mv 10.1002/ejic.202300182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2837230200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837230200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-d41c9e19ea0ee6e382b6c675461ed206a505a456d825f5517cc8748c0bb64fe73</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EElBYmSOxwJBydhInYUNRgaAiKgRz5DoX6uLGwW6AbkzM_EZ-CYlawch0J70fp3sIOaIwpADsDOdKDhmwAIAmbIvsUUhTH3jCtrs9DEKfpmGyS_admwNAAAHfI58TobUoVbs4yfNTLzOLRuM7Os9UHv3--JrMjGtmQjnTWKzRuzUaZas7g6hLb2L0aoHWnXv3-NpNNdXoZdY410XHqn5W9VPfJLx1j7Ftr2SmXgpV9-Km4YDsVEI7PNzMAXm8HD1k1_747irPLsa-DChjfhlSmSJNUQAixyBhUy55HIWcYsmAiwgiEUa8TFhURRGNpUziMJEwnfKwwjgYkON1b2PNS4tuWcxNa-vuZMGSIO7YsY7MgAzXLtm_YrEqGqsWwq4KCkXPuuhZF7-su0C6Drwpjat_3MXoJs_-sj_rxYcm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837230200</pqid></control><display><type>article</type><title>Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer</title><source>Access via Wiley Online Library</source><creator>Walsgrove, Henry T. G. ; Chowdhury, Khadiza (Rodella) K. ; Dabringhaus, Philipp ; Patrick, Brian O. ; Gates, Derek P.</creator><creatorcontrib>Walsgrove, Henry T. G. ; Chowdhury, Khadiza (Rodella) K. ; Dabringhaus, Philipp ; Patrick, Brian O. ; Gates, Derek P.</creatorcontrib><description>The anionic polymerization of 1‐phosphaisoprene [Mes*P=C(Me)−CH=CH2 (E‐1)] affords poly(1‐phosphaisoprene) 2 in high yield (75 %). Concentrated solutions of polymer 2 (Mn=21,800 g mol−1; Đ=1.02) a P‐analogue of natural rubber, undergo gelation upon treatment with [Pd(cod)Cl2] (0.15 P equiv). Evidence for P‐coordination of 2 to PdII was obtained by 31P and 1H NMR spectroscopy. The gelation is reversed by the addition of PMe3 and the reformation of recoverable 2 along with [PdII−PMe3] complexes were confirmed by 31P NMR spectroscopy. The use of labile metal‐ligand bonds to reversibly form gels is unprecedented and has relevance to self‐healing materials. In contrast, coordination of 2 to [Pd(η3‐C3H5)(μ‐Cl)]2 affords the well‐defined complex 2 ⋅ [Pd(η3‐C3H5)Cl] which was characterized by 31P, 1H, 13C{1H} NMR spectroscopy and GPC. This polymer chemistry was complemented by detailed molecular model studies of the coordination chemistry of monomer 1‐phosphaisoprene E‐1 with [Pd(cod)Cl2] and [Pd(η3‐C3H5)(μ‐Cl)]2]. Palladium(II) complexes of phosphorus rubber [poly(1‐phopshaisoprene)] are disclosed. Addition of [Pd(cod)Cl2] to a solution of poly(1‐phosphaisoprene) resulted in gelation of the material which was reversed by the addition of a competing molecular phosphine ligand. By contrast, the macromolecular complex formed from the addition of [Pd(η3‐C3H5)(μ‐Cl)]2 to poly(1‐phospaisoprene) did not exhibit gelation. These results suggest cross‐linking of the polymer facilitates gel formation.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.202300182</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anionic polymerization ; Coordination ; Gelation ; Gels ; Inorganic chemistry ; Main group elements ; Natural rubber ; NMR spectroscopy ; P ligands ; Palladium ; Phosphaalkenes ; Polymer chemistry ; Polymers</subject><ispartof>European journal of inorganic chemistry, 2023-07, Vol.26 (20), p.n/a</ispartof><rights>2023 The Authors. European Journal of Inorganic Chemistry published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-d41c9e19ea0ee6e382b6c675461ed206a505a456d825f5517cc8748c0bb64fe73</cites><orcidid>0000-0002-0025-0486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.202300182$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.202300182$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Walsgrove, Henry T. G.</creatorcontrib><creatorcontrib>Chowdhury, Khadiza (Rodella) K.</creatorcontrib><creatorcontrib>Dabringhaus, Philipp</creatorcontrib><creatorcontrib>Patrick, Brian O.</creatorcontrib><creatorcontrib>Gates, Derek P.</creatorcontrib><title>Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer</title><title>European journal of inorganic chemistry</title><description>The anionic polymerization of 1‐phosphaisoprene [Mes*P=C(Me)−CH=CH2 (E‐1)] affords poly(1‐phosphaisoprene) 2 in high yield (75 %). Concentrated solutions of polymer 2 (Mn=21,800 g mol−1; Đ=1.02) a P‐analogue of natural rubber, undergo gelation upon treatment with [Pd(cod)Cl2] (0.15 P equiv). Evidence for P‐coordination of 2 to PdII was obtained by 31P and 1H NMR spectroscopy. The gelation is reversed by the addition of PMe3 and the reformation of recoverable 2 along with [PdII−PMe3] complexes were confirmed by 31P NMR spectroscopy. The use of labile metal‐ligand bonds to reversibly form gels is unprecedented and has relevance to self‐healing materials. In contrast, coordination of 2 to [Pd(η3‐C3H5)(μ‐Cl)]2 affords the well‐defined complex 2 ⋅ [Pd(η3‐C3H5)Cl] which was characterized by 31P, 1H, 13C{1H} NMR spectroscopy and GPC. This polymer chemistry was complemented by detailed molecular model studies of the coordination chemistry of monomer 1‐phosphaisoprene E‐1 with [Pd(cod)Cl2] and [Pd(η3‐C3H5)(μ‐Cl)]2]. Palladium(II) complexes of phosphorus rubber [poly(1‐phopshaisoprene)] are disclosed. Addition of [Pd(cod)Cl2] to a solution of poly(1‐phosphaisoprene) resulted in gelation of the material which was reversed by the addition of a competing molecular phosphine ligand. By contrast, the macromolecular complex formed from the addition of [Pd(η3‐C3H5)(μ‐Cl)]2 to poly(1‐phospaisoprene) did not exhibit gelation. These results suggest cross‐linking of the polymer facilitates gel formation.</description><subject>Anionic polymerization</subject><subject>Coordination</subject><subject>Gelation</subject><subject>Gels</subject><subject>Inorganic chemistry</subject><subject>Main group elements</subject><subject>Natural rubber</subject><subject>NMR spectroscopy</subject><subject>P ligands</subject><subject>Palladium</subject><subject>Phosphaalkenes</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhi0EElBYmSOxwJBydhInYUNRgaAiKgRz5DoX6uLGwW6AbkzM_EZ-CYlawch0J70fp3sIOaIwpADsDOdKDhmwAIAmbIvsUUhTH3jCtrs9DEKfpmGyS_admwNAAAHfI58TobUoVbs4yfNTLzOLRuM7Os9UHv3--JrMjGtmQjnTWKzRuzUaZas7g6hLb2L0aoHWnXv3-NpNNdXoZdY410XHqn5W9VPfJLx1j7Ftr2SmXgpV9-Km4YDsVEI7PNzMAXm8HD1k1_747irPLsa-DChjfhlSmSJNUQAixyBhUy55HIWcYsmAiwgiEUa8TFhURRGNpUziMJEwnfKwwjgYkON1b2PNS4tuWcxNa-vuZMGSIO7YsY7MgAzXLtm_YrEqGqsWwq4KCkXPuuhZF7-su0C6Drwpjat_3MXoJs_-sj_rxYcm</recordid><startdate>20230713</startdate><enddate>20230713</enddate><creator>Walsgrove, Henry T. G.</creator><creator>Chowdhury, Khadiza (Rodella) K.</creator><creator>Dabringhaus, Philipp</creator><creator>Patrick, Brian O.</creator><creator>Gates, Derek P.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0025-0486</orcidid></search><sort><creationdate>20230713</creationdate><title>Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer</title><author>Walsgrove, Henry T. G. ; Chowdhury, Khadiza (Rodella) K. ; Dabringhaus, Philipp ; Patrick, Brian O. ; Gates, Derek P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-d41c9e19ea0ee6e382b6c675461ed206a505a456d825f5517cc8748c0bb64fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anionic polymerization</topic><topic>Coordination</topic><topic>Gelation</topic><topic>Gels</topic><topic>Inorganic chemistry</topic><topic>Main group elements</topic><topic>Natural rubber</topic><topic>NMR spectroscopy</topic><topic>P ligands</topic><topic>Palladium</topic><topic>Phosphaalkenes</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsgrove, Henry T. G.</creatorcontrib><creatorcontrib>Chowdhury, Khadiza (Rodella) K.</creatorcontrib><creatorcontrib>Dabringhaus, Philipp</creatorcontrib><creatorcontrib>Patrick, Brian O.</creatorcontrib><creatorcontrib>Gates, Derek P.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsgrove, Henry T. G.</au><au>Chowdhury, Khadiza (Rodella) K.</au><au>Dabringhaus, Philipp</au><au>Patrick, Brian O.</au><au>Gates, Derek P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2023-07-13</date><risdate>2023</risdate><volume>26</volume><issue>20</issue><epage>n/a</epage><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>The anionic polymerization of 1‐phosphaisoprene [Mes*P=C(Me)−CH=CH2 (E‐1)] affords poly(1‐phosphaisoprene) 2 in high yield (75 %). Concentrated solutions of polymer 2 (Mn=21,800 g mol−1; Đ=1.02) a P‐analogue of natural rubber, undergo gelation upon treatment with [Pd(cod)Cl2] (0.15 P equiv). Evidence for P‐coordination of 2 to PdII was obtained by 31P and 1H NMR spectroscopy. The gelation is reversed by the addition of PMe3 and the reformation of recoverable 2 along with [PdII−PMe3] complexes were confirmed by 31P NMR spectroscopy. The use of labile metal‐ligand bonds to reversibly form gels is unprecedented and has relevance to self‐healing materials. In contrast, coordination of 2 to [Pd(η3‐C3H5)(μ‐Cl)]2 affords the well‐defined complex 2 ⋅ [Pd(η3‐C3H5)Cl] which was characterized by 31P, 1H, 13C{1H} NMR spectroscopy and GPC. This polymer chemistry was complemented by detailed molecular model studies of the coordination chemistry of monomer 1‐phosphaisoprene E‐1 with [Pd(cod)Cl2] and [Pd(η3‐C3H5)(μ‐Cl)]2]. Palladium(II) complexes of phosphorus rubber [poly(1‐phopshaisoprene)] are disclosed. Addition of [Pd(cod)Cl2] to a solution of poly(1‐phosphaisoprene) resulted in gelation of the material which was reversed by the addition of a competing molecular phosphine ligand. By contrast, the macromolecular complex formed from the addition of [Pd(η3‐C3H5)(μ‐Cl)]2 to poly(1‐phospaisoprene) did not exhibit gelation. These results suggest cross‐linking of the polymer facilitates gel formation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.202300182</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0025-0486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2023-07, Vol.26 (20), p.n/a
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_2837230200
source Access via Wiley Online Library
subjects Anionic polymerization
Coordination
Gelation
Gels
Inorganic chemistry
Main group elements
Natural rubber
NMR spectroscopy
P ligands
Palladium
Phosphaalkenes
Polymer chemistry
Polymers
title Palladium(II) Complexes of 1‐Phosphaisoprene Molecules and Polymers: Reversible Cross‐Linking of a Phosphorus‐Containing Polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palladium(II)%20Complexes%20of%201%E2%80%90Phosphaisoprene%20Molecules%20and%20Polymers:%20Reversible%20Cross%E2%80%90Linking%20of%20a%20Phosphorus%E2%80%90Containing%20Polymer&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Walsgrove,%20Henry%20T.%20G.&rft.date=2023-07-13&rft.volume=26&rft.issue=20&rft.epage=n/a&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.202300182&rft_dat=%3Cproquest_cross%3E2837230200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837230200&rft_id=info:pmid/&rfr_iscdi=true