A “poor man’s” approach to topology optimization of natural convection problems
Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2019-04, Vol.59 (4), p.1105-1124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1124 |
---|---|
container_issue | 4 |
container_start_page | 1105 |
container_title | Structural and multidisciplinary optimization |
container_volume | 59 |
creator | Asmussen, Janus Alexandersen, Joe Sigmund, Ole Andreasen, Casper Schousboe |
description | Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes-based solutions. Despite the significant simplifications, hereunder neglecting viscous boundary layers, topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes-based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton’s convection law. |
doi_str_mv | 10.1007/s00158-019-02215-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2837192633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837192633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7ab616f487bc5da53dd325fcd9a26d47c93903a29685ef87a41250b1931eae093</originalsourceid><addsrcrecordid>eNp9kN1KwzAUx4MoOKcv4FXA6-pJ0rTJ5Rh-wcAbBe9Cmqazo21q0gnzaq8h6MvtScw20TvhwDkc_h_wQ-icwCUByK8CAOEiASIToJTwRB6gEcniQVIhDn_v_PkYnYSwAAABqRyhpwnerD975zxudbdZf4TN-gvrvvdOmxc8uDi9a9x8hV0_1G39rofaddhVuNPD0usGG9e9WbP7RlfR2DacoqNKN8Ge_ewxerq5fpzeJbOH2_vpZJYYJviQ5LrISFalIi8MLzVnZckor0wpNc3KNDeSSWCaykxwW4lcp4RyKIhkxGoLko3RxT43Fr8ubRjUwi19FysVFSwnkmaMRRXdq4x3IXhbqd7XrfYrRUBt8ak9PhXxqR0-tY1me1OI4m5u_V_0P65v2I92FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837192633</pqid></control><display><type>article</type><title>A “poor man’s” approach to topology optimization of natural convection problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Asmussen, Janus ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</creator><creatorcontrib>Asmussen, Janus ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</creatorcontrib><description>Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes-based solutions. Despite the significant simplifications, hereunder neglecting viscous boundary layers, topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes-based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton’s convection law.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-019-02215-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Boundary layers ; Computational Mathematics and Numerical Analysis ; Engineering ; Engineering Design ; Fluid flow ; Free convection ; Heat transfer ; Material properties ; Navier-Stokes equations ; Optimization ; Potential flow ; Reduced order models ; Research Paper ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2019-04, Vol.59 (4), p.1105-1124</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7ab616f487bc5da53dd325fcd9a26d47c93903a29685ef87a41250b1931eae093</citedby><cites>FETCH-LOGICAL-c385t-7ab616f487bc5da53dd325fcd9a26d47c93903a29685ef87a41250b1931eae093</cites><orcidid>0000-0001-7872-6272 ; 0000-0003-0344-7249 ; 0000-0002-9949-9782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-019-02215-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-019-02215-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Asmussen, Janus</creatorcontrib><creatorcontrib>Alexandersen, Joe</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><creatorcontrib>Andreasen, Casper Schousboe</creatorcontrib><title>A “poor man’s” approach to topology optimization of natural convection problems</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes-based solutions. Despite the significant simplifications, hereunder neglecting viscous boundary layers, topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes-based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton’s convection law.</description><subject>Approximation</subject><subject>Boundary layers</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Material properties</subject><subject>Navier-Stokes equations</subject><subject>Optimization</subject><subject>Potential flow</subject><subject>Reduced order models</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kN1KwzAUx4MoOKcv4FXA6-pJ0rTJ5Rh-wcAbBe9Cmqazo21q0gnzaq8h6MvtScw20TvhwDkc_h_wQ-icwCUByK8CAOEiASIToJTwRB6gEcniQVIhDn_v_PkYnYSwAAABqRyhpwnerD975zxudbdZf4TN-gvrvvdOmxc8uDi9a9x8hV0_1G39rofaddhVuNPD0usGG9e9WbP7RlfR2DacoqNKN8Ge_ewxerq5fpzeJbOH2_vpZJYYJviQ5LrISFalIi8MLzVnZckor0wpNc3KNDeSSWCaykxwW4lcp4RyKIhkxGoLko3RxT43Fr8ubRjUwi19FysVFSwnkmaMRRXdq4x3IXhbqd7XrfYrRUBt8ak9PhXxqR0-tY1me1OI4m5u_V_0P65v2I92FQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Asmussen, Janus</creator><creator>Alexandersen, Joe</creator><creator>Sigmund, Ole</creator><creator>Andreasen, Casper Schousboe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7872-6272</orcidid><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0002-9949-9782</orcidid></search><sort><creationdate>20190401</creationdate><title>A “poor man’s” approach to topology optimization of natural convection problems</title><author>Asmussen, Janus ; Alexandersen, Joe ; Sigmund, Ole ; Andreasen, Casper Schousboe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7ab616f487bc5da53dd325fcd9a26d47c93903a29685ef87a41250b1931eae093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Boundary layers</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Material properties</topic><topic>Navier-Stokes equations</topic><topic>Optimization</topic><topic>Potential flow</topic><topic>Reduced order models</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asmussen, Janus</creatorcontrib><creatorcontrib>Alexandersen, Joe</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><creatorcontrib>Andreasen, Casper Schousboe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asmussen, Janus</au><au>Alexandersen, Joe</au><au>Sigmund, Ole</au><au>Andreasen, Casper Schousboe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A “poor man’s” approach to topology optimization of natural convection problems</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>59</volume><issue>4</issue><spage>1105</spage><epage>1124</epage><pages>1105-1124</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Topology optimization of natural convection problems is computationally expensive, due to the large number of degrees of freedom (DOFs) in the model and its two-way coupled nature. Herein, a method is presented to reduce the computational effort by use of a reduced-order model governed by simplified physics. The proposed method models the fluid flow using a potential flow model, which introduces an additional fluid property. This material property currently requires tuning of the model by comparison to numerical Navier-Stokes-based solutions. Despite the significant simplifications, hereunder neglecting viscous boundary layers, topology optimization based on the reduced-order model is shown to provide qualitatively similar designs, as those obtained using a full Navier-Stokes-based model. The number of DOFs is reduced by 50% in two dimensions and the computational complexity is evaluated to be approximately 12.5% of the full model. We further compare to optimized designs obtained utilizing Newton’s convection law.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-019-02215-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7872-6272</orcidid><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0002-9949-9782</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2019-04, Vol.59 (4), p.1105-1124 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2837192633 |
source | Springer Nature - Complete Springer Journals |
subjects | Approximation Boundary layers Computational Mathematics and Numerical Analysis Engineering Engineering Design Fluid flow Free convection Heat transfer Material properties Navier-Stokes equations Optimization Potential flow Reduced order models Research Paper Theoretical and Applied Mechanics Topology optimization |
title | A “poor man’s” approach to topology optimization of natural convection problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20%E2%80%9Cpoor%20man%E2%80%99s%E2%80%9D%20approach%20to%20topology%20optimization%20of%20natural%20convection%20problems&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Asmussen,%20Janus&rft.date=2019-04-01&rft.volume=59&rft.issue=4&rft.spage=1105&rft.epage=1124&rft.pages=1105-1124&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-019-02215-9&rft_dat=%3Cproquest_cross%3E2837192633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837192633&rft_id=info:pmid/&rfr_iscdi=true |