Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs
We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bound...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lommen, Nils Giesl, Jürgen |
description | We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2837190562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837190562</sourcerecordid><originalsourceid>FETCH-proquest_journals_28371905623</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBa0Jl81DJJahNBthbB66DoXJs7bvr6IvqAVgfOOQvhSaWiINtJuRI-cx-GoUxSGcfKE9eythpdZzTkNE4DOjTIfIAHf91AjA0UZEeGlizcuxfCkWbTMFALF-NQo4WbJW3rkTdi2dYDo__jWmyLU5mfg8nSc0Z2VU-zNZ9UyUyl0T6ME6n-u96tLD3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837190562</pqid></control><display><type>article</type><title>Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs</title><source>Free E- Journals</source><creator>Lommen, Nils ; Giesl, Jürgen</creator><creatorcontrib>Lommen, Nils ; Giesl, Jürgen</creatorcontrib><description>We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Arithmetic ; Completeness ; Complexity ; Deduction ; Integer programming</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lommen, Nils</creatorcontrib><creatorcontrib>Giesl, Jürgen</creatorcontrib><title>Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs</title><title>arXiv.org</title><description>We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Completeness</subject><subject>Complexity</subject><subject>Deduction</subject><subject>Integer programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBa0Jl81DJJahNBthbB66DoXJs7bvr6IvqAVgfOOQvhSaWiINtJuRI-cx-GoUxSGcfKE9eythpdZzTkNE4DOjTIfIAHf91AjA0UZEeGlizcuxfCkWbTMFALF-NQo4WbJW3rkTdi2dYDo__jWmyLU5mfg8nSc0Z2VU-zNZ9UyUyl0T6ME6n-u96tLD3c</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Lommen, Nils</creator><creator>Giesl, Jürgen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241115</creationdate><title>Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs</title><author>Lommen, Nils ; Giesl, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28371905623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Completeness</topic><topic>Complexity</topic><topic>Deduction</topic><topic>Integer programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Lommen, Nils</creatorcontrib><creatorcontrib>Giesl, Jürgen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lommen, Nils</au><au>Giesl, Jürgen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs</atitle><jtitle>arXiv.org</jtitle><date>2024-11-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a new procedure to infer size bounds for integer programs automatically. Size bounds are important for the deduction of bounds on the runtime complexity or in general, for the resource analysis of programs. We show that our technique is complete (i.e., it always computes finite size bounds) for a subclass of loops, possibly with non-linear arithmetic. Moreover, we present a novel approach to combine and integrate this complete technique into an incomplete approach to infer size and runtime bounds of general integer programs. We prove completeness of our integration for an important subclass of integer programs. We implemented our new algorithm in the automated complexity analysis tool KoAT to evaluate its power, in particular on programs with non-linear arithmetic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2837190562 |
source | Free E- Journals |
subjects | Algorithms Arithmetic Completeness Complexity Deduction Integer programming |
title | Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Targeting%20Completeness:%20Using%20Closed%20Forms%20for%20Size%20Bounds%20of%20Integer%20Programs&rft.jtitle=arXiv.org&rft.au=Lommen,%20Nils&rft.date=2024-11-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2837190562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837190562&rft_id=info:pmid/&rfr_iscdi=true |