A study on prediction of user overall gratification in European continental tourism city hotels
Recommender Systems (RS) are proven to be very beneficial on e-commerce sites by providing helpful information to the customers in the decision-making process. Collaborative RS is the most popular type of these systems, and they use ratingsto find users’ opinions on specific items to determine neigh...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2796 |
creator | Krishna, Chinta Venkata Murali Srinath, Muttineni Sri, Kondavaradala Navya Kumar, Karajada Hemanth Kumar, Gundamala Kiran |
description | Recommender Systems (RS) are proven to be very beneficial on e-commerce sites by providing helpful information to the customers in the decision-making process. Collaborative RS is the most popular type of these systems, and they use ratingsto find users’ opinions on specific items to determine neighborhoods between users. Traditional RS, like collaborative, content-based, knowledge-based, and hybrid systems, use two-dimensional ratings for the user and the item itself. The information about hotels in different destinations, user profiles, and their expressed reviews use to generate a new dataset. Thus, the dataset containscontextual information and the traditional two-dimensional paradigm, user, and item (hotel). The additional contextual information represents additional dimensions to make a multidimensional dataset. This article analyzes the Trip Advisor multidimensional dataset to predict the overall gratification of various hotel classes and trip types based on the importance of the contextual segment. |
doi_str_mv | 10.1063/5.0148938 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2837161991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837161991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p965-b78210eb469fa1a69efd48a460087f74a40d3ff581292410dca599d5cde789243</originalsourceid><addsrcrecordid>eNotUE1LAzEUDKJgrR78BwFvwtZk830spX5AwUsP3kK6STRlm6xJVui_d209zWNmeG_eAHCP0QIjTp7YAmEqFZEXYIYZw43gmF-CGUKKNi0lH9fgppQ9Qq0SQs6AXsJSR3uEKcIhOxu6GqYxeTgWl2H6cdn0PfzMpgYfOnNSQ4TrMafBmQi7FGuILlbTw5rGHMoBdqEe4Veqri-34Mqbvri7f5yD7fN6u3ptNu8vb6vlphkUZ81OyBYjt6NceYMNV85bKg3lCEnhBTUUWeI9k7hVLcXIdoYpZVlnnZATQ-bg4bx2yOl7dKXq_ZQlThd1K4nAHCuFJ9fj2VWmhKdX9JDDweSjxkj_9aeZ_u-P_AL6vGLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2837161991</pqid></control><display><type>conference_proceeding</type><title>A study on prediction of user overall gratification in European continental tourism city hotels</title><source>AIP Journals Complete</source><creator>Krishna, Chinta Venkata Murali ; Srinath, Muttineni ; Sri, Kondavaradala Navya ; Kumar, Karajada Hemanth ; Kumar, Gundamala Kiran</creator><contributor>Rao, K V Sambasiva ; Rao, P Rama Koteswara</contributor><creatorcontrib>Krishna, Chinta Venkata Murali ; Srinath, Muttineni ; Sri, Kondavaradala Navya ; Kumar, Karajada Hemanth ; Kumar, Gundamala Kiran ; Rao, K V Sambasiva ; Rao, P Rama Koteswara</creatorcontrib><description>Recommender Systems (RS) are proven to be very beneficial on e-commerce sites by providing helpful information to the customers in the decision-making process. Collaborative RS is the most popular type of these systems, and they use ratingsto find users’ opinions on specific items to determine neighborhoods between users. Traditional RS, like collaborative, content-based, knowledge-based, and hybrid systems, use two-dimensional ratings for the user and the item itself. The information about hotels in different destinations, user profiles, and their expressed reviews use to generate a new dataset. Thus, the dataset containscontextual information and the traditional two-dimensional paradigm, user, and item (hotel). The additional contextual information represents additional dimensions to make a multidimensional dataset. This article analyzes the Trip Advisor multidimensional dataset to predict the overall gratification of various hotel classes and trip types based on the importance of the contextual segment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0148938</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Collaboration ; Datasets ; Decision making ; Hotels ; Hybrid systems ; Recommender systems</subject><ispartof>AIP conference proceedings, 2023, Vol.2796 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0148938$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Rao, K V Sambasiva</contributor><contributor>Rao, P Rama Koteswara</contributor><creatorcontrib>Krishna, Chinta Venkata Murali</creatorcontrib><creatorcontrib>Srinath, Muttineni</creatorcontrib><creatorcontrib>Sri, Kondavaradala Navya</creatorcontrib><creatorcontrib>Kumar, Karajada Hemanth</creatorcontrib><creatorcontrib>Kumar, Gundamala Kiran</creatorcontrib><title>A study on prediction of user overall gratification in European continental tourism city hotels</title><title>AIP conference proceedings</title><description>Recommender Systems (RS) are proven to be very beneficial on e-commerce sites by providing helpful information to the customers in the decision-making process. Collaborative RS is the most popular type of these systems, and they use ratingsto find users’ opinions on specific items to determine neighborhoods between users. Traditional RS, like collaborative, content-based, knowledge-based, and hybrid systems, use two-dimensional ratings for the user and the item itself. The information about hotels in different destinations, user profiles, and their expressed reviews use to generate a new dataset. Thus, the dataset containscontextual information and the traditional two-dimensional paradigm, user, and item (hotel). The additional contextual information represents additional dimensions to make a multidimensional dataset. This article analyzes the Trip Advisor multidimensional dataset to predict the overall gratification of various hotel classes and trip types based on the importance of the contextual segment.</description><subject>Collaboration</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Hotels</subject><subject>Hybrid systems</subject><subject>Recommender systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE1LAzEUDKJgrR78BwFvwtZk830spX5AwUsP3kK6STRlm6xJVui_d209zWNmeG_eAHCP0QIjTp7YAmEqFZEXYIYZw43gmF-CGUKKNi0lH9fgppQ9Qq0SQs6AXsJSR3uEKcIhOxu6GqYxeTgWl2H6cdn0PfzMpgYfOnNSQ4TrMafBmQi7FGuILlbTw5rGHMoBdqEe4Veqri-34Mqbvri7f5yD7fN6u3ptNu8vb6vlphkUZ81OyBYjt6NceYMNV85bKg3lCEnhBTUUWeI9k7hVLcXIdoYpZVlnnZATQ-bg4bx2yOl7dKXq_ZQlThd1K4nAHCuFJ9fj2VWmhKdX9JDDweSjxkj_9aeZ_u-P_AL6vGLS</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Krishna, Chinta Venkata Murali</creator><creator>Srinath, Muttineni</creator><creator>Sri, Kondavaradala Navya</creator><creator>Kumar, Karajada Hemanth</creator><creator>Kumar, Gundamala Kiran</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230714</creationdate><title>A study on prediction of user overall gratification in European continental tourism city hotels</title><author>Krishna, Chinta Venkata Murali ; Srinath, Muttineni ; Sri, Kondavaradala Navya ; Kumar, Karajada Hemanth ; Kumar, Gundamala Kiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p965-b78210eb469fa1a69efd48a460087f74a40d3ff581292410dca599d5cde789243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Collaboration</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Hotels</topic><topic>Hybrid systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna, Chinta Venkata Murali</creatorcontrib><creatorcontrib>Srinath, Muttineni</creatorcontrib><creatorcontrib>Sri, Kondavaradala Navya</creatorcontrib><creatorcontrib>Kumar, Karajada Hemanth</creatorcontrib><creatorcontrib>Kumar, Gundamala Kiran</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna, Chinta Venkata Murali</au><au>Srinath, Muttineni</au><au>Sri, Kondavaradala Navya</au><au>Kumar, Karajada Hemanth</au><au>Kumar, Gundamala Kiran</au><au>Rao, K V Sambasiva</au><au>Rao, P Rama Koteswara</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A study on prediction of user overall gratification in European continental tourism city hotels</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-14</date><risdate>2023</risdate><volume>2796</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Recommender Systems (RS) are proven to be very beneficial on e-commerce sites by providing helpful information to the customers in the decision-making process. Collaborative RS is the most popular type of these systems, and they use ratingsto find users’ opinions on specific items to determine neighborhoods between users. Traditional RS, like collaborative, content-based, knowledge-based, and hybrid systems, use two-dimensional ratings for the user and the item itself. The information about hotels in different destinations, user profiles, and their expressed reviews use to generate a new dataset. Thus, the dataset containscontextual information and the traditional two-dimensional paradigm, user, and item (hotel). The additional contextual information represents additional dimensions to make a multidimensional dataset. This article analyzes the Trip Advisor multidimensional dataset to predict the overall gratification of various hotel classes and trip types based on the importance of the contextual segment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0148938</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2796 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2837161991 |
source | AIP Journals Complete |
subjects | Collaboration Datasets Decision making Hotels Hybrid systems Recommender systems |
title | A study on prediction of user overall gratification in European continental tourism city hotels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20study%20on%20prediction%20of%20user%20overall%20gratification%20in%20European%20continental%20tourism%20city%20hotels&rft.btitle=AIP%20conference%20proceedings&rft.au=Krishna,%20Chinta%20Venkata%20Murali&rft.date=2023-07-14&rft.volume=2796&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0148938&rft_dat=%3Cproquest_scita%3E2837161991%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837161991&rft_id=info:pmid/&rfr_iscdi=true |