A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace

To predict and optimize the billet heating process in reheating furnace for rolling mills, this paper proposes a hybrid model that combines data-driven model with traditional mechanism knowledge, abbreviated as HMDM. By examining the heat conduction mechanism, a billet temperature distribution equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-08, Vol.19 (8), p.1-10
Hauptverfasser: Yu, Hong, Gong, Jiangnan, Wang, Guoyin, Chen, Xiaofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 8
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 19
creator Yu, Hong
Gong, Jiangnan
Wang, Guoyin
Chen, Xiaofang
description To predict and optimize the billet heating process in reheating furnace for rolling mills, this paper proposes a hybrid model that combines data-driven model with traditional mechanism knowledge, abbreviated as HMDM. By examining the heat conduction mechanism, a billet temperature distribution equation is established. Then, the billet temperature distribution in each heating zone is calculated and spliced with the corresponding process parameters. The Stacked-AutoEncoder is utilized to extract the features of process parameters, and the Long Short Term Memory model is employed to predict the temperature. Finally, using the previous predictions, the parameters of the subsequent heating stage are optimized and adjusted during the heating process. The experimental results on the real steel plant verify the effectiveness of HMDM. For example, the temperature prediction error has been reduced to less than 4^{\circ }C, and the number of billets with abnormal tapping temperature has been decreased by 42.9\%.
doi_str_mv 10.1109/TII.2022.3221219
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837145576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944864</ieee_id><sourcerecordid>2837145576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4df8de84f85911ba1af5b00be322ccbf43ee7a58ef0d1b5d52f4881039385c3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYjuTdw0cT3YJ7RLJCIkGIzO2qYzvdWSYWbsDAv89RYhru4j59yb8yF0S8mIUqIf8uVyxAhjI84YZVSfoQHVgmaESHKeeilpxhnhl-iq6zaE8AnheoA-pnixL2Jw-KVxUGHfRPwYqgp6nNu2DfUnzmHbQrT9LgJ-jeBC2YemxrZ2eN32YRt-7N8i1PgNviANyTTfxdqWcI0uvK06uDnVIXqfP-WzRbZaPy9n01VWMk37TDivHCjhldSUFpZaLwtCCkhhyrLwggNMrFTgiaOFdJJ5oRRNCbiSJR-i--PVNjbfO-h6s2kO_6vOMMUnVEg5GScVOarK2HRdBG_aGLY27g0l5sDQJIbmwNCcGCbL3dESAOBfrrUQaiz4Lwz7bXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837145576</pqid></control><display><type>article</type><title>A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Hong ; Gong, Jiangnan ; Wang, Guoyin ; Chen, Xiaofang</creator><creatorcontrib>Yu, Hong ; Gong, Jiangnan ; Wang, Guoyin ; Chen, Xiaofang</creatorcontrib><description><![CDATA[To predict and optimize the billet heating process in reheating furnace for rolling mills, this paper proposes a hybrid model that combines data-driven model with traditional mechanism knowledge, abbreviated as HMDM. By examining the heat conduction mechanism, a billet temperature distribution equation is established. Then, the billet temperature distribution in each heating zone is calculated and spliced with the corresponding process parameters. The Stacked-AutoEncoder is utilized to extract the features of process parameters, and the Long Short Term Memory model is employed to predict the temperature. Finally, using the previous predictions, the parameters of the subsequent heating stage are optimized and adjusted during the heating process. The experimental results on the real steel plant verify the effectiveness of HMDM. For example, the temperature prediction error has been reduced to less than <inline-formula><tex-math notation="LaTeX">4^{\circ }</tex-math></inline-formula>C, and the number of billets with abnormal tapping temperature has been decreased by <inline-formula><tex-math notation="LaTeX">42.9\%</tex-math></inline-formula>.]]></description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3221219</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Billets ; Conduction cooling ; Conduction heating ; Conductive heat transfer ; deep learning ; Error reduction ; Furnaces ; Heating ; Heating furnaces ; Heating systems ; Iron and steel plants ; Mathematical models ; multi-stage prediction ; Optimization ; Predictive models ; process industry ; process optimization ; Process parameters ; Reheating furnace ; Rolling mills ; Temperature distribution</subject><ispartof>IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4df8de84f85911ba1af5b00be322ccbf43ee7a58ef0d1b5d52f4881039385c3</citedby><cites>FETCH-LOGICAL-c291t-4df8de84f85911ba1af5b00be322ccbf43ee7a58ef0d1b5d52f4881039385c3</cites><orcidid>0000-0002-8521-5232 ; 0000-0002-7188-032X ; 0000-0003-0667-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944864$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9944864$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Gong, Jiangnan</creatorcontrib><creatorcontrib>Wang, Guoyin</creatorcontrib><creatorcontrib>Chen, Xiaofang</creatorcontrib><title>A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description><![CDATA[To predict and optimize the billet heating process in reheating furnace for rolling mills, this paper proposes a hybrid model that combines data-driven model with traditional mechanism knowledge, abbreviated as HMDM. By examining the heat conduction mechanism, a billet temperature distribution equation is established. Then, the billet temperature distribution in each heating zone is calculated and spliced with the corresponding process parameters. The Stacked-AutoEncoder is utilized to extract the features of process parameters, and the Long Short Term Memory model is employed to predict the temperature. Finally, using the previous predictions, the parameters of the subsequent heating stage are optimized and adjusted during the heating process. The experimental results on the real steel plant verify the effectiveness of HMDM. For example, the temperature prediction error has been reduced to less than <inline-formula><tex-math notation="LaTeX">4^{\circ }</tex-math></inline-formula>C, and the number of billets with abnormal tapping temperature has been decreased by <inline-formula><tex-math notation="LaTeX">42.9\%</tex-math></inline-formula>.]]></description><subject>Billets</subject><subject>Conduction cooling</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>deep learning</subject><subject>Error reduction</subject><subject>Furnaces</subject><subject>Heating</subject><subject>Heating furnaces</subject><subject>Heating systems</subject><subject>Iron and steel plants</subject><subject>Mathematical models</subject><subject>multi-stage prediction</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>process industry</subject><subject>process optimization</subject><subject>Process parameters</subject><subject>Reheating furnace</subject><subject>Rolling mills</subject><subject>Temperature distribution</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYjuTdw0cT3YJ7RLJCIkGIzO2qYzvdWSYWbsDAv89RYhru4j59yb8yF0S8mIUqIf8uVyxAhjI84YZVSfoQHVgmaESHKeeilpxhnhl-iq6zaE8AnheoA-pnixL2Jw-KVxUGHfRPwYqgp6nNu2DfUnzmHbQrT9LgJ-jeBC2YemxrZ2eN32YRt-7N8i1PgNviANyTTfxdqWcI0uvK06uDnVIXqfP-WzRbZaPy9n01VWMk37TDivHCjhldSUFpZaLwtCCkhhyrLwggNMrFTgiaOFdJJ5oRRNCbiSJR-i--PVNjbfO-h6s2kO_6vOMMUnVEg5GScVOarK2HRdBG_aGLY27g0l5sDQJIbmwNCcGCbL3dESAOBfrrUQaiz4Lwz7bXE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yu, Hong</creator><creator>Gong, Jiangnan</creator><creator>Wang, Guoyin</creator><creator>Chen, Xiaofang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8521-5232</orcidid><orcidid>https://orcid.org/0000-0002-7188-032X</orcidid><orcidid>https://orcid.org/0000-0003-0667-8413</orcidid></search><sort><creationdate>20230801</creationdate><title>A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace</title><author>Yu, Hong ; Gong, Jiangnan ; Wang, Guoyin ; Chen, Xiaofang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4df8de84f85911ba1af5b00be322ccbf43ee7a58ef0d1b5d52f4881039385c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Billets</topic><topic>Conduction cooling</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>deep learning</topic><topic>Error reduction</topic><topic>Furnaces</topic><topic>Heating</topic><topic>Heating furnaces</topic><topic>Heating systems</topic><topic>Iron and steel plants</topic><topic>Mathematical models</topic><topic>multi-stage prediction</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>process industry</topic><topic>process optimization</topic><topic>Process parameters</topic><topic>Reheating furnace</topic><topic>Rolling mills</topic><topic>Temperature distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Gong, Jiangnan</creatorcontrib><creatorcontrib>Wang, Guoyin</creatorcontrib><creatorcontrib>Chen, Xiaofang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Hong</au><au>Gong, Jiangnan</au><au>Wang, Guoyin</au><au>Chen, Xiaofang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract><![CDATA[To predict and optimize the billet heating process in reheating furnace for rolling mills, this paper proposes a hybrid model that combines data-driven model with traditional mechanism knowledge, abbreviated as HMDM. By examining the heat conduction mechanism, a billet temperature distribution equation is established. Then, the billet temperature distribution in each heating zone is calculated and spliced with the corresponding process parameters. The Stacked-AutoEncoder is utilized to extract the features of process parameters, and the Long Short Term Memory model is employed to predict the temperature. Finally, using the previous predictions, the parameters of the subsequent heating stage are optimized and adjusted during the heating process. The experimental results on the real steel plant verify the effectiveness of HMDM. For example, the temperature prediction error has been reduced to less than <inline-formula><tex-math notation="LaTeX">4^{\circ }</tex-math></inline-formula>C, and the number of billets with abnormal tapping temperature has been decreased by <inline-formula><tex-math notation="LaTeX">42.9\%</tex-math></inline-formula>.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3221219</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8521-5232</orcidid><orcidid>https://orcid.org/0000-0002-7188-032X</orcidid><orcidid>https://orcid.org/0000-0003-0667-8413</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.1-10
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2837145576
source IEEE Electronic Library (IEL)
subjects Billets
Conduction cooling
Conduction heating
Conductive heat transfer
deep learning
Error reduction
Furnaces
Heating
Heating furnaces
Heating systems
Iron and steel plants
Mathematical models
multi-stage prediction
Optimization
Predictive models
process industry
process optimization
Process parameters
Reheating furnace
Rolling mills
Temperature distribution
title A Hybrid Model for Billet Tapping Temperature Prediction and Optimization in Reheating Furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Model%20for%20Billet%20Tapping%20Temperature%20Prediction%20and%20Optimization%20in%20Reheating%20Furnace&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yu,%20Hong&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3221219&rft_dat=%3Cproquest_RIE%3E2837145576%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837145576&rft_id=info:pmid/&rft_ieee_id=9944864&rfr_iscdi=true