Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography

The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-08, Vol.19 (8), p.8943-8952
Hauptverfasser: Njitacke, Zeric Tabekoueng, Nkapkop, Jean De Dieu, Signing, Vitrice Folifack, Tsafack, Nestor, Sone, Michael Ekonde, Awrejcewicz, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8952
container_issue 8
container_start_page 8943
container_title IEEE transactions on industrial informatics
container_volume 19
creator Njitacke, Zeric Tabekoueng
Nkapkop, Jean De Dieu
Signing, Vitrice Folifack
Tsafack, Nestor
Sone, Michael Ekonde
Awrejcewicz, Jan
description The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.
doi_str_mv 10.1109/TII.2022.3223233
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837145267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954906</ieee_id><sourcerecordid>2837145267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc-dL0rSNt1GmFua8zHNIm3RmdE1NU3H_vR0dXt4P-Hzfgw9C9wQWhIB42hbFggKlC0Ypo4xdoBkRMYkAOFyOM-ckYhTYNbrp-z0AS4GJGao37sc0ePUbvDkY_D40wfZBlY3BW1UOeG2Ub227wxszeNc-49z6arABF4euGRNtUMG6FqtW42XXNbaa9uBw7o9dcDuvuq_jLbqqVdObu3Ofo8-X1TZ_i9Yfr0W-XEcVY1mISqWMTkhGYmAqLg3JMm14UqW1ShSnjDNdihqoLjM9FmqISHVNqgRirnUWszl6nO523n0Ppg9y7wbfji8lzVhKYk6TdKRgoirv-t6bWnbeHpQ_SgLyZFOONuXJpjzbHCMPU8QaY_5xIXgsIGF_An5x_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837145267</pqid></control><display><type>article</type><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><source>IEEE Electronic Library (IEL)</source><creator>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</creator><creatorcontrib>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</creatorcontrib><description>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3223233</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuits ; Compressed sensing ; Compressed sensing (CS) ; Cryptography ; Decoding ; Deoxyribonucleic acid ; deoxyribonucleic acid (DNA) coding ; Digital imaging ; DNA ; Dynamic stability ; Dynamics ; Encryption ; Extreme values ; homogeneous extreme multistability ; Image coding ; image compression/encryption ; Initial conditions ; Integrated circuit modeling ; Learning ; Mathematical models ; Medical imaging ; memristor ; Neurons ; Stability analysis ; tabu learning neuron ; Time compression</subject><ispartof>IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.8943-8952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</citedby><cites>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</cites><orcidid>0000-0003-0387-921X ; 0000-0001-7736-5145 ; 0000-0002-6220-6931 ; 0000-0001-7797-8929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954906$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954906$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><creatorcontrib>Nkapkop, Jean De Dieu</creatorcontrib><creatorcontrib>Signing, Vitrice Folifack</creatorcontrib><creatorcontrib>Tsafack, Nestor</creatorcontrib><creatorcontrib>Sone, Michael Ekonde</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</description><subject>Circuits</subject><subject>Compressed sensing</subject><subject>Compressed sensing (CS)</subject><subject>Cryptography</subject><subject>Decoding</subject><subject>Deoxyribonucleic acid</subject><subject>deoxyribonucleic acid (DNA) coding</subject><subject>Digital imaging</subject><subject>DNA</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Encryption</subject><subject>Extreme values</subject><subject>homogeneous extreme multistability</subject><subject>Image coding</subject><subject>image compression/encryption</subject><subject>Initial conditions</subject><subject>Integrated circuit modeling</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>memristor</subject><subject>Neurons</subject><subject>Stability analysis</subject><subject>tabu learning neuron</subject><subject>Time compression</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc-dL0rSNt1GmFua8zHNIm3RmdE1NU3H_vR0dXt4P-Hzfgw9C9wQWhIB42hbFggKlC0Ypo4xdoBkRMYkAOFyOM-ckYhTYNbrp-z0AS4GJGao37sc0ePUbvDkY_D40wfZBlY3BW1UOeG2Ub227wxszeNc-49z6arABF4euGRNtUMG6FqtW42XXNbaa9uBw7o9dcDuvuq_jLbqqVdObu3Ofo8-X1TZ_i9Yfr0W-XEcVY1mISqWMTkhGYmAqLg3JMm14UqW1ShSnjDNdihqoLjM9FmqISHVNqgRirnUWszl6nO523n0Ppg9y7wbfji8lzVhKYk6TdKRgoirv-t6bWnbeHpQ_SgLyZFOONuXJpjzbHCMPU8QaY_5xIXgsIGF_An5x_w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Njitacke, Zeric Tabekoueng</creator><creator>Nkapkop, Jean De Dieu</creator><creator>Signing, Vitrice Folifack</creator><creator>Tsafack, Nestor</creator><creator>Sone, Michael Ekonde</creator><creator>Awrejcewicz, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0387-921X</orcidid><orcidid>https://orcid.org/0000-0001-7736-5145</orcidid><orcidid>https://orcid.org/0000-0002-6220-6931</orcidid><orcidid>https://orcid.org/0000-0001-7797-8929</orcidid></search><sort><creationdate>20230801</creationdate><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><author>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Compressed sensing</topic><topic>Compressed sensing (CS)</topic><topic>Cryptography</topic><topic>Decoding</topic><topic>Deoxyribonucleic acid</topic><topic>deoxyribonucleic acid (DNA) coding</topic><topic>Digital imaging</topic><topic>DNA</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Encryption</topic><topic>Extreme values</topic><topic>homogeneous extreme multistability</topic><topic>Image coding</topic><topic>image compression/encryption</topic><topic>Initial conditions</topic><topic>Integrated circuit modeling</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>memristor</topic><topic>Neurons</topic><topic>Stability analysis</topic><topic>tabu learning neuron</topic><topic>Time compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><creatorcontrib>Nkapkop, Jean De Dieu</creatorcontrib><creatorcontrib>Signing, Vitrice Folifack</creatorcontrib><creatorcontrib>Tsafack, Nestor</creatorcontrib><creatorcontrib>Sone, Michael Ekonde</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Njitacke, Zeric Tabekoueng</au><au>Nkapkop, Jean De Dieu</au><au>Signing, Vitrice Folifack</au><au>Tsafack, Nestor</au><au>Sone, Michael Ekonde</au><au>Awrejcewicz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>8943</spage><epage>8952</epage><pages>8943-8952</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3223233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0387-921X</orcidid><orcidid>https://orcid.org/0000-0001-7736-5145</orcidid><orcidid>https://orcid.org/0000-0002-6220-6931</orcidid><orcidid>https://orcid.org/0000-0001-7797-8929</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.8943-8952
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2837145267
source IEEE Electronic Library (IEL)
subjects Circuits
Compressed sensing
Compressed sensing (CS)
Cryptography
Decoding
Deoxyribonucleic acid
deoxyribonucleic acid (DNA) coding
Digital imaging
DNA
Dynamic stability
Dynamics
Encryption
Extreme values
homogeneous extreme multistability
Image coding
image compression/encryption
Initial conditions
Integrated circuit modeling
Learning
Mathematical models
Medical imaging
memristor
Neurons
Stability analysis
tabu learning neuron
Time compression
title Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Extreme%20Multistable%20Tabu%20Learning%20Neuron:%20Circuit%20Implementation%20and%20Application%20to%20Cryptography&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Njitacke,%20Zeric%20Tabekoueng&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=8943&rft.epage=8952&rft.pages=8943-8952&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3223233&rft_dat=%3Cproquest_RIE%3E2837145267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837145267&rft_id=info:pmid/&rft_ieee_id=9954906&rfr_iscdi=true