Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography
The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitiv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-08, Vol.19 (8), p.8943-8952 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8952 |
---|---|
container_issue | 8 |
container_start_page | 8943 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Njitacke, Zeric Tabekoueng Nkapkop, Jean De Dieu Signing, Vitrice Folifack Tsafack, Nestor Sone, Michael Ekonde Awrejcewicz, Jan |
description | The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics. |
doi_str_mv | 10.1109/TII.2022.3223233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837145267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954906</ieee_id><sourcerecordid>2837145267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc-dL0rSNt1GmFua8zHNIm3RmdE1NU3H_vR0dXt4P-Hzfgw9C9wQWhIB42hbFggKlC0Ypo4xdoBkRMYkAOFyOM-ckYhTYNbrp-z0AS4GJGao37sc0ePUbvDkY_D40wfZBlY3BW1UOeG2Ub227wxszeNc-49z6arABF4euGRNtUMG6FqtW42XXNbaa9uBw7o9dcDuvuq_jLbqqVdObu3Ofo8-X1TZ_i9Yfr0W-XEcVY1mISqWMTkhGYmAqLg3JMm14UqW1ShSnjDNdihqoLjM9FmqISHVNqgRirnUWszl6nO523n0Ppg9y7wbfji8lzVhKYk6TdKRgoirv-t6bWnbeHpQ_SgLyZFOONuXJpjzbHCMPU8QaY_5xIXgsIGF_An5x_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837145267</pqid></control><display><type>article</type><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><source>IEEE Electronic Library (IEL)</source><creator>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</creator><creatorcontrib>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</creatorcontrib><description>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3223233</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuits ; Compressed sensing ; Compressed sensing (CS) ; Cryptography ; Decoding ; Deoxyribonucleic acid ; deoxyribonucleic acid (DNA) coding ; Digital imaging ; DNA ; Dynamic stability ; Dynamics ; Encryption ; Extreme values ; homogeneous extreme multistability ; Image coding ; image compression/encryption ; Initial conditions ; Integrated circuit modeling ; Learning ; Mathematical models ; Medical imaging ; memristor ; Neurons ; Stability analysis ; tabu learning neuron ; Time compression</subject><ispartof>IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.8943-8952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</citedby><cites>FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</cites><orcidid>0000-0003-0387-921X ; 0000-0001-7736-5145 ; 0000-0002-6220-6931 ; 0000-0001-7797-8929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954906$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954906$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><creatorcontrib>Nkapkop, Jean De Dieu</creatorcontrib><creatorcontrib>Signing, Vitrice Folifack</creatorcontrib><creatorcontrib>Tsafack, Nestor</creatorcontrib><creatorcontrib>Sone, Michael Ekonde</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</description><subject>Circuits</subject><subject>Compressed sensing</subject><subject>Compressed sensing (CS)</subject><subject>Cryptography</subject><subject>Decoding</subject><subject>Deoxyribonucleic acid</subject><subject>deoxyribonucleic acid (DNA) coding</subject><subject>Digital imaging</subject><subject>DNA</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Encryption</subject><subject>Extreme values</subject><subject>homogeneous extreme multistability</subject><subject>Image coding</subject><subject>image compression/encryption</subject><subject>Initial conditions</subject><subject>Integrated circuit modeling</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>memristor</subject><subject>Neurons</subject><subject>Stability analysis</subject><subject>tabu learning neuron</subject><subject>Time compression</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc-dL0rSNt1GmFua8zHNIm3RmdE1NU3H_vR0dXt4P-Hzfgw9C9wQWhIB42hbFggKlC0Ypo4xdoBkRMYkAOFyOM-ckYhTYNbrp-z0AS4GJGao37sc0ePUbvDkY_D40wfZBlY3BW1UOeG2Ub227wxszeNc-49z6arABF4euGRNtUMG6FqtW42XXNbaa9uBw7o9dcDuvuq_jLbqqVdObu3Ofo8-X1TZ_i9Yfr0W-XEcVY1mISqWMTkhGYmAqLg3JMm14UqW1ShSnjDNdihqoLjM9FmqISHVNqgRirnUWszl6nO523n0Ppg9y7wbfji8lzVhKYk6TdKRgoirv-t6bWnbeHpQ_SgLyZFOONuXJpjzbHCMPU8QaY_5xIXgsIGF_An5x_w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Njitacke, Zeric Tabekoueng</creator><creator>Nkapkop, Jean De Dieu</creator><creator>Signing, Vitrice Folifack</creator><creator>Tsafack, Nestor</creator><creator>Sone, Michael Ekonde</creator><creator>Awrejcewicz, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0387-921X</orcidid><orcidid>https://orcid.org/0000-0001-7736-5145</orcidid><orcidid>https://orcid.org/0000-0002-6220-6931</orcidid><orcidid>https://orcid.org/0000-0001-7797-8929</orcidid></search><sort><creationdate>20230801</creationdate><title>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</title><author>Njitacke, Zeric Tabekoueng ; Nkapkop, Jean De Dieu ; Signing, Vitrice Folifack ; Tsafack, Nestor ; Sone, Michael Ekonde ; Awrejcewicz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-baaed6181403a4be188de56c7fa6a52353db9f02db8d2db2e197df1c6045dd843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Compressed sensing</topic><topic>Compressed sensing (CS)</topic><topic>Cryptography</topic><topic>Decoding</topic><topic>Deoxyribonucleic acid</topic><topic>deoxyribonucleic acid (DNA) coding</topic><topic>Digital imaging</topic><topic>DNA</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Encryption</topic><topic>Extreme values</topic><topic>homogeneous extreme multistability</topic><topic>Image coding</topic><topic>image compression/encryption</topic><topic>Initial conditions</topic><topic>Integrated circuit modeling</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>memristor</topic><topic>Neurons</topic><topic>Stability analysis</topic><topic>tabu learning neuron</topic><topic>Time compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><creatorcontrib>Nkapkop, Jean De Dieu</creatorcontrib><creatorcontrib>Signing, Vitrice Folifack</creatorcontrib><creatorcontrib>Tsafack, Nestor</creatorcontrib><creatorcontrib>Sone, Michael Ekonde</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Njitacke, Zeric Tabekoueng</au><au>Nkapkop, Jean De Dieu</au><au>Signing, Vitrice Folifack</au><au>Tsafack, Nestor</au><au>Sone, Michael Ekonde</au><au>Awrejcewicz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>8</issue><spage>8943</spage><epage>8952</epage><pages>8943-8952</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The complex dynamics of a simple memristive tabu learning neuron (MTLN) are considered in this article. The analysis of the stability of its equilibria revealed that it displays self-excited dynamics. The investigation of the dynamics of the considered model highlighted that it is extremely sensitive to the initial conditions. That sensitivity to the initial conditions is supported by the coexistence of an infinite number of stable states for the same set of system parameters but using different initial states. Among the infinity of coexisting stable states, there are periodic, quasiperiodic, and chaotic ones. The coexistence of an infinite number of chaotic attractors found in this work and not yet reported in such a model represents the first important contribution of this work. The circuit of the coupled neuron is also realized in the PSPICE simulation environment to further support the obtained result in extreme multistability. Therefore, the revealed chaotic dynamics of the MTLN is applied to compress and encrypt digital medical images. The compressed sensing (CS) approach is combined with deoxyribonucleic acid (DNA) coding/decoding to achieve high compression/encryption performances, including very low computational cost (encryption time t = 0.162 ms, encryption throughput ET = 1618.1 MB/s, number of CPU cycles NC = 1.8) useful for real-time compression. The compression/encryption method developed in this work represents the second main contribution based on the results of the analysis metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3223233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0387-921X</orcidid><orcidid>https://orcid.org/0000-0001-7736-5145</orcidid><orcidid>https://orcid.org/0000-0002-6220-6931</orcidid><orcidid>https://orcid.org/0000-0001-7797-8929</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-08, Vol.19 (8), p.8943-8952 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2837145267 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Compressed sensing Compressed sensing (CS) Cryptography Decoding Deoxyribonucleic acid deoxyribonucleic acid (DNA) coding Digital imaging DNA Dynamic stability Dynamics Encryption Extreme values homogeneous extreme multistability Image coding image compression/encryption Initial conditions Integrated circuit modeling Learning Mathematical models Medical imaging memristor Neurons Stability analysis tabu learning neuron Time compression |
title | Novel Extreme Multistable Tabu Learning Neuron: Circuit Implementation and Application to Cryptography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Extreme%20Multistable%20Tabu%20Learning%20Neuron:%20Circuit%20Implementation%20and%20Application%20to%20Cryptography&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Njitacke,%20Zeric%20Tabekoueng&rft.date=2023-08-01&rft.volume=19&rft.issue=8&rft.spage=8943&rft.epage=8952&rft.pages=8943-8952&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3223233&rft_dat=%3Cproquest_RIE%3E2837145267%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837145267&rft_id=info:pmid/&rft_ieee_id=9954906&rfr_iscdi=true |