Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition
Single-Frame Infrared Small Target Detection (SF-IRSTD) has grown in popularity due to its broad application. Several models based on Low-Rank and Sparse Decomposition (LRSD) have been proposed recently and have shown excellent performance. Nevertheless, these methods regard the non-low-rank sparse...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Liu, Yujia Liu, Xianyuan Hao, Xuying Tang, Wei Zhang, Sanxing Lei, Tao |
description | Single-Frame Infrared Small Target Detection (SF-IRSTD) has grown in popularity due to its broad application. Several models based on Low-Rank and Sparse Decomposition (LRSD) have been proposed recently and have shown excellent performance. Nevertheless, these methods regard the non-low-rank sparse points as the targets, obscuring the distinction between the non-low-rank noise and the target in the infrared image. To address this issue, we consider that the targets usually have a high local salience compared to the noise and propose a novel method using High Local Variance, Low-Rank and Sparse Decomposition (HiLV-LRSD), identifying the sparse points with high local salience and non-low-rank as the targets and the remaining regions as the background. Specifically, we first use the local variance to represent local salience and propose an LV* norm to constrain the background's low-rank and local variance. Then, we define an adaptively re-weighted L1 ( L lv ,1 ) norm to constrain the sparsity of the target and enhance the influence of local variance. Finally, we propose an optimization framework and solve it by a Partially Iterative Alternating Direction Method of Multipliers (PI-ADMM). We evaluate our proposed method on the publicly available dataset SIRST and compare it to 10 state-of-the-art SF-IRSTD methods. The results show that our proposed method outperforms these methods. |
doi_str_mv | 10.1109/TGRS.2023.3291435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837144461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171426</ieee_id><sourcerecordid>2837144461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e15137e49858057462ed22f20b20f1d21c18ed807143c61e7fedf3e06cb328e53</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWTJLdzR6l2g8oCG31GtLspG7dj5rdIv33ZmkPnoaB93mHeQi5BzYCYNnzerpcjTjjYiR4BlLEF2QAcawilkh5SQYMsiTiKuPX5KZtd4yBjCEdELcq6m2J0cSbCum8dt54zOmqMmVJ18ZvsaOv2KHtiqammyOdFdsvumisKemn8YWpLT6F_Tdamvqbmjqwe-NbDJRtqn3TFj15S66cKVu8O88h-Zi8rcezaPE-nY9fFpHlmewihBhEijJTsWJxKhOOOeeOsw1nDnIOFhTmiqXhQ5sApg5zJ5AldiO4wlgMyeOpd--bnwO2nd41B1-Hk5orETApEwgpOKWsb9rWo9N7X1TGHzUw3evUvU7d69RnnYF5ODEFIv7LQyjlifgD72pv-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837144461</pqid></control><display><type>article</type><title>Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yujia ; Liu, Xianyuan ; Hao, Xuying ; Tang, Wei ; Zhang, Sanxing ; Lei, Tao</creator><creatorcontrib>Liu, Yujia ; Liu, Xianyuan ; Hao, Xuying ; Tang, Wei ; Zhang, Sanxing ; Lei, Tao</creatorcontrib><description>Single-Frame Infrared Small Target Detection (SF-IRSTD) has grown in popularity due to its broad application. Several models based on Low-Rank and Sparse Decomposition (LRSD) have been proposed recently and have shown excellent performance. Nevertheless, these methods regard the non-low-rank sparse points as the targets, obscuring the distinction between the non-low-rank noise and the target in the infrared image. To address this issue, we consider that the targets usually have a high local salience compared to the noise and propose a novel method using High Local Variance, Low-Rank and Sparse Decomposition (HiLV-LRSD), identifying the sparse points with high local salience and non-low-rank as the targets and the remaining regions as the background. Specifically, we first use the local variance to represent local salience and propose an LV* norm to constrain the background's low-rank and local variance. Then, we define an adaptively re-weighted L1 ( L lv ,1 ) norm to constrain the sparsity of the target and enhance the influence of local variance. Finally, we propose an optimization framework and solve it by a Partially Iterative Alternating Direction Method of Multipliers (PI-ADMM). We evaluate our proposed method on the publicly available dataset SIRST and compare it to 10 state-of-the-art SF-IRSTD methods. The results show that our proposed method outperforms these methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3291435</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Decomposition ; Detection ; high local salience ; high local variance ; Image edge detection ; Infrared imagery ; Iterative methods ; low-rank and sparse decomposition ; Object detection ; Optimization ; Salience ; Single-frame infrared small target detection ; singular value ; Sparse matrices ; Target detection ; Tensors ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e15137e49858057462ed22f20b20f1d21c18ed807143c61e7fedf3e06cb328e53</citedby><cites>FETCH-LOGICAL-c294t-e15137e49858057462ed22f20b20f1d21c18ed807143c61e7fedf3e06cb328e53</cites><orcidid>0000-0002-3084-519X ; 0000-0001-5105-6045 ; 0000-0002-0900-1582 ; 0000-0002-4957-6364 ; 0000-0002-7800-0751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10171426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yujia</creatorcontrib><creatorcontrib>Liu, Xianyuan</creatorcontrib><creatorcontrib>Hao, Xuying</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Zhang, Sanxing</creatorcontrib><creatorcontrib>Lei, Tao</creatorcontrib><title>Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Single-Frame Infrared Small Target Detection (SF-IRSTD) has grown in popularity due to its broad application. Several models based on Low-Rank and Sparse Decomposition (LRSD) have been proposed recently and have shown excellent performance. Nevertheless, these methods regard the non-low-rank sparse points as the targets, obscuring the distinction between the non-low-rank noise and the target in the infrared image. To address this issue, we consider that the targets usually have a high local salience compared to the noise and propose a novel method using High Local Variance, Low-Rank and Sparse Decomposition (HiLV-LRSD), identifying the sparse points with high local salience and non-low-rank as the targets and the remaining regions as the background. Specifically, we first use the local variance to represent local salience and propose an LV* norm to constrain the background's low-rank and local variance. Then, we define an adaptively re-weighted L1 ( L lv ,1 ) norm to constrain the sparsity of the target and enhance the influence of local variance. Finally, we propose an optimization framework and solve it by a Partially Iterative Alternating Direction Method of Multipliers (PI-ADMM). We evaluate our proposed method on the publicly available dataset SIRST and compare it to 10 state-of-the-art SF-IRSTD methods. The results show that our proposed method outperforms these methods.</description><subject>Decomposition</subject><subject>Detection</subject><subject>high local salience</subject><subject>high local variance</subject><subject>Image edge detection</subject><subject>Infrared imagery</subject><subject>Iterative methods</subject><subject>low-rank and sparse decomposition</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Salience</subject><subject>Single-frame infrared small target detection</subject><subject>singular value</subject><subject>Sparse matrices</subject><subject>Target detection</subject><subject>Tensors</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWTJLdzR6l2g8oCG31GtLspG7dj5rdIv33ZmkPnoaB93mHeQi5BzYCYNnzerpcjTjjYiR4BlLEF2QAcawilkh5SQYMsiTiKuPX5KZtd4yBjCEdELcq6m2J0cSbCum8dt54zOmqMmVJ18ZvsaOv2KHtiqammyOdFdsvumisKemn8YWpLT6F_Tdamvqbmjqwe-NbDJRtqn3TFj15S66cKVu8O88h-Zi8rcezaPE-nY9fFpHlmewihBhEijJTsWJxKhOOOeeOsw1nDnIOFhTmiqXhQ5sApg5zJ5AldiO4wlgMyeOpd--bnwO2nd41B1-Hk5orETApEwgpOKWsb9rWo9N7X1TGHzUw3evUvU7d69RnnYF5ODEFIv7LQyjlifgD72pv-A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Yujia</creator><creator>Liu, Xianyuan</creator><creator>Hao, Xuying</creator><creator>Tang, Wei</creator><creator>Zhang, Sanxing</creator><creator>Lei, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3084-519X</orcidid><orcidid>https://orcid.org/0000-0001-5105-6045</orcidid><orcidid>https://orcid.org/0000-0002-0900-1582</orcidid><orcidid>https://orcid.org/0000-0002-4957-6364</orcidid><orcidid>https://orcid.org/0000-0002-7800-0751</orcidid></search><sort><creationdate>20230101</creationdate><title>Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition</title><author>Liu, Yujia ; Liu, Xianyuan ; Hao, Xuying ; Tang, Wei ; Zhang, Sanxing ; Lei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e15137e49858057462ed22f20b20f1d21c18ed807143c61e7fedf3e06cb328e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decomposition</topic><topic>Detection</topic><topic>high local salience</topic><topic>high local variance</topic><topic>Image edge detection</topic><topic>Infrared imagery</topic><topic>Iterative methods</topic><topic>low-rank and sparse decomposition</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Salience</topic><topic>Single-frame infrared small target detection</topic><topic>singular value</topic><topic>Sparse matrices</topic><topic>Target detection</topic><topic>Tensors</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yujia</creatorcontrib><creatorcontrib>Liu, Xianyuan</creatorcontrib><creatorcontrib>Hao, Xuying</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Zhang, Sanxing</creatorcontrib><creatorcontrib>Lei, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yujia</au><au>Liu, Xianyuan</au><au>Hao, Xuying</au><au>Tang, Wei</au><au>Zhang, Sanxing</au><au>Lei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Single-Frame Infrared Small Target Detection (SF-IRSTD) has grown in popularity due to its broad application. Several models based on Low-Rank and Sparse Decomposition (LRSD) have been proposed recently and have shown excellent performance. Nevertheless, these methods regard the non-low-rank sparse points as the targets, obscuring the distinction between the non-low-rank noise and the target in the infrared image. To address this issue, we consider that the targets usually have a high local salience compared to the noise and propose a novel method using High Local Variance, Low-Rank and Sparse Decomposition (HiLV-LRSD), identifying the sparse points with high local salience and non-low-rank as the targets and the remaining regions as the background. Specifically, we first use the local variance to represent local salience and propose an LV* norm to constrain the background's low-rank and local variance. Then, we define an adaptively re-weighted L1 ( L lv ,1 ) norm to constrain the sparsity of the target and enhance the influence of local variance. Finally, we propose an optimization framework and solve it by a Partially Iterative Alternating Direction Method of Multipliers (PI-ADMM). We evaluate our proposed method on the publicly available dataset SIRST and compare it to 10 state-of-the-art SF-IRSTD methods. The results show that our proposed method outperforms these methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3291435</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3084-519X</orcidid><orcidid>https://orcid.org/0000-0001-5105-6045</orcidid><orcidid>https://orcid.org/0000-0002-0900-1582</orcidid><orcidid>https://orcid.org/0000-0002-4957-6364</orcidid><orcidid>https://orcid.org/0000-0002-7800-0751</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2837144461 |
source | IEEE Electronic Library (IEL) |
subjects | Decomposition Detection high local salience high local variance Image edge detection Infrared imagery Iterative methods low-rank and sparse decomposition Object detection Optimization Salience Single-frame infrared small target detection singular value Sparse matrices Target detection Tensors Three-dimensional displays |
title | Single-Frame Infrared Small Target Detection by High Local Variance, Low-Rank and Sparse Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Frame%20Infrared%20Small%20Target%20Detection%20by%20High%20Local%20Variance,%20Low-Rank%20and%20Sparse%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Yujia&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3291435&rft_dat=%3Cproquest_RIE%3E2837144461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837144461&rft_id=info:pmid/&rft_ieee_id=10171426&rfr_iscdi=true |