Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer

The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Chen, Yang, Cao, Wenfei, Pang, Li, Peng, Jiangjun, Cao, Xiangyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Chen, Yang
Cao, Wenfei
Pang, Li
Peng, Jiangjun
Cao, Xiangyong
description The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.
doi_str_mv 10.1109/TGRS.2023.3292518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837144352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10173585</ieee_id><sourcerecordid>2837144352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp13nwkM0up2hYKhRrdDpPMS0lpkziTiPXXm9IuXD0unHsfHELugU4AqH7KZuv3CaOMTzjTTIK6ICOQUsU0EeKSjCjoJGZKs2tyE8KWUhAS0hFZzQ8t-tBi0Xm7ixZ7u8HoBeumClW9ib4rG2X40_Ue49ZjQP-NLsqabmA_ra9sVzV1tMZNvxvSL_pbclXaXcC78x2Tj7fXbDqPl6vZYvq8jAumRRczwAS5LoV0OWDJnSpSVlopmNO2UBZcwpnNEyXAOZvnhc5LiVI6a4E60HxMHk-7rW--egyd2Ta9r4eXhimeghBcsoGCE1X4JgSPpWl9tbf-YICaozdz9GaO3szZ29B5OHUqRPzHQ8qlkvwPnuhrVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837144352</pqid></control><display><type>article</type><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</creator><creatorcontrib>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</creatorcontrib><description>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3292518</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Correlation ; Embedding ; Hyperspectral image denoising ; Hyperspectral imaging ; Image processing ; Image quality ; Image restoration ; Image texture ; Noise reduction ; Restoration ; Smoothness ; Sparsity ; Task analysis ; Texture ; Texture-preserved total variation ; Total variation ; Variation ; Weighting ; Weighting scheme</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</citedby><cites>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</cites><orcidid>0000-0003-0849-9419 ; 0000-0001-9645-5154 ; 0000-0001-7912-3457 ; 0000-0002-1089-0268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10173585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10173585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Cao, Wenfei</creatorcontrib><creatorcontrib>Pang, Li</creatorcontrib><creatorcontrib>Peng, Jiangjun</creatorcontrib><creatorcontrib>Cao, Xiangyong</creatorcontrib><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</description><subject>Adaptation models</subject><subject>Correlation</subject><subject>Embedding</subject><subject>Hyperspectral image denoising</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Image texture</subject><subject>Noise reduction</subject><subject>Restoration</subject><subject>Smoothness</subject><subject>Sparsity</subject><subject>Task analysis</subject><subject>Texture</subject><subject>Texture-preserved total variation</subject><subject>Total variation</subject><subject>Variation</subject><subject>Weighting</subject><subject>Weighting scheme</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp13nwkM0up2hYKhRrdDpPMS0lpkziTiPXXm9IuXD0unHsfHELugU4AqH7KZuv3CaOMTzjTTIK6ICOQUsU0EeKSjCjoJGZKs2tyE8KWUhAS0hFZzQ8t-tBi0Xm7ixZ7u8HoBeumClW9ib4rG2X40_Ue49ZjQP-NLsqabmA_ra9sVzV1tMZNvxvSL_pbclXaXcC78x2Tj7fXbDqPl6vZYvq8jAumRRczwAS5LoV0OWDJnSpSVlopmNO2UBZcwpnNEyXAOZvnhc5LiVI6a4E60HxMHk-7rW--egyd2Ta9r4eXhimeghBcsoGCE1X4JgSPpWl9tbf-YICaozdz9GaO3szZ29B5OHUqRPzHQ8qlkvwPnuhrVA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Yang</creator><creator>Cao, Wenfei</creator><creator>Pang, Li</creator><creator>Peng, Jiangjun</creator><creator>Cao, Xiangyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0849-9419</orcidid><orcidid>https://orcid.org/0000-0001-9645-5154</orcidid><orcidid>https://orcid.org/0000-0001-7912-3457</orcidid><orcidid>https://orcid.org/0000-0002-1089-0268</orcidid></search><sort><creationdate>20230101</creationdate><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><author>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Correlation</topic><topic>Embedding</topic><topic>Hyperspectral image denoising</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Image texture</topic><topic>Noise reduction</topic><topic>Restoration</topic><topic>Smoothness</topic><topic>Sparsity</topic><topic>Task analysis</topic><topic>Texture</topic><topic>Texture-preserved total variation</topic><topic>Total variation</topic><topic>Variation</topic><topic>Weighting</topic><topic>Weighting scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Cao, Wenfei</creatorcontrib><creatorcontrib>Pang, Li</creatorcontrib><creatorcontrib>Peng, Jiangjun</creatorcontrib><creatorcontrib>Cao, Xiangyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yang</au><au>Cao, Wenfei</au><au>Pang, Li</au><au>Peng, Jiangjun</au><au>Cao, Xiangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3292518</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0849-9419</orcidid><orcidid>https://orcid.org/0000-0001-9645-5154</orcidid><orcidid>https://orcid.org/0000-0001-7912-3457</orcidid><orcidid>https://orcid.org/0000-0002-1089-0268</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2837144352
source IEEE Electronic Library (IEL)
subjects Adaptation models
Correlation
Embedding
Hyperspectral image denoising
Hyperspectral imaging
Image processing
Image quality
Image restoration
Image texture
Noise reduction
Restoration
Smoothness
Sparsity
Task analysis
Texture
Texture-preserved total variation
Total variation
Variation
Weighting
Weighting scheme
title Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Denoising%20via%20Texture-preserved%20Total%20Variation%20Regularizer&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yang&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3292518&rft_dat=%3Cproquest_RIE%3E2837144352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837144352&rft_id=info:pmid/&rft_ieee_id=10173585&rfr_iscdi=true