Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer
The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Chen, Yang Cao, Wenfei Pang, Li Peng, Jiangjun Cao, Xiangyong |
description | The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme. |
doi_str_mv | 10.1109/TGRS.2023.3292518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837144352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10173585</ieee_id><sourcerecordid>2837144352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp13nwkM0up2hYKhRrdDpPMS0lpkziTiPXXm9IuXD0unHsfHELugU4AqH7KZuv3CaOMTzjTTIK6ICOQUsU0EeKSjCjoJGZKs2tyE8KWUhAS0hFZzQ8t-tBi0Xm7ixZ7u8HoBeumClW9ib4rG2X40_Ue49ZjQP-NLsqabmA_ra9sVzV1tMZNvxvSL_pbclXaXcC78x2Tj7fXbDqPl6vZYvq8jAumRRczwAS5LoV0OWDJnSpSVlopmNO2UBZcwpnNEyXAOZvnhc5LiVI6a4E60HxMHk-7rW--egyd2Ta9r4eXhimeghBcsoGCE1X4JgSPpWl9tbf-YICaozdz9GaO3szZ29B5OHUqRPzHQ8qlkvwPnuhrVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837144352</pqid></control><display><type>article</type><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</creator><creatorcontrib>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</creatorcontrib><description>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3292518</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Correlation ; Embedding ; Hyperspectral image denoising ; Hyperspectral imaging ; Image processing ; Image quality ; Image restoration ; Image texture ; Noise reduction ; Restoration ; Smoothness ; Sparsity ; Task analysis ; Texture ; Texture-preserved total variation ; Total variation ; Variation ; Weighting ; Weighting scheme</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</citedby><cites>FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</cites><orcidid>0000-0003-0849-9419 ; 0000-0001-9645-5154 ; 0000-0001-7912-3457 ; 0000-0002-1089-0268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10173585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10173585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Cao, Wenfei</creatorcontrib><creatorcontrib>Pang, Li</creatorcontrib><creatorcontrib>Peng, Jiangjun</creatorcontrib><creatorcontrib>Cao, Xiangyong</creatorcontrib><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</description><subject>Adaptation models</subject><subject>Correlation</subject><subject>Embedding</subject><subject>Hyperspectral image denoising</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Image texture</subject><subject>Noise reduction</subject><subject>Restoration</subject><subject>Smoothness</subject><subject>Sparsity</subject><subject>Task analysis</subject><subject>Texture</subject><subject>Texture-preserved total variation</subject><subject>Total variation</subject><subject>Variation</subject><subject>Weighting</subject><subject>Weighting scheme</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Dp13nwkM0up2hYKhRrdDpPMS0lpkziTiPXXm9IuXD0unHsfHELugU4AqH7KZuv3CaOMTzjTTIK6ICOQUsU0EeKSjCjoJGZKs2tyE8KWUhAS0hFZzQ8t-tBi0Xm7ixZ7u8HoBeumClW9ib4rG2X40_Ue49ZjQP-NLsqabmA_ra9sVzV1tMZNvxvSL_pbclXaXcC78x2Tj7fXbDqPl6vZYvq8jAumRRczwAS5LoV0OWDJnSpSVlopmNO2UBZcwpnNEyXAOZvnhc5LiVI6a4E60HxMHk-7rW--egyd2Ta9r4eXhimeghBcsoGCE1X4JgSPpWl9tbf-YICaozdz9GaO3szZ29B5OHUqRPzHQ8qlkvwPnuhrVA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Yang</creator><creator>Cao, Wenfei</creator><creator>Pang, Li</creator><creator>Peng, Jiangjun</creator><creator>Cao, Xiangyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0849-9419</orcidid><orcidid>https://orcid.org/0000-0001-9645-5154</orcidid><orcidid>https://orcid.org/0000-0001-7912-3457</orcidid><orcidid>https://orcid.org/0000-0002-1089-0268</orcidid></search><sort><creationdate>20230101</creationdate><title>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</title><author>Chen, Yang ; Cao, Wenfei ; Pang, Li ; Peng, Jiangjun ; Cao, Xiangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-21e6e39f45db1ef3d8c72fa542d9ac8a1d632ab6841ddabbc9bf5e55daa10d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Correlation</topic><topic>Embedding</topic><topic>Hyperspectral image denoising</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Image texture</topic><topic>Noise reduction</topic><topic>Restoration</topic><topic>Smoothness</topic><topic>Sparsity</topic><topic>Task analysis</topic><topic>Texture</topic><topic>Texture-preserved total variation</topic><topic>Total variation</topic><topic>Variation</topic><topic>Weighting</topic><topic>Weighting scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Cao, Wenfei</creatorcontrib><creatorcontrib>Pang, Li</creatorcontrib><creatorcontrib>Peng, Jiangjun</creatorcontrib><creatorcontrib>Cao, Xiangyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yang</au><au>Cao, Wenfei</au><au>Pang, Li</au><au>Peng, Jiangjun</au><au>Cao, Xiangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The total variation (TV) regularizer is a widely used technique in image processing tasks to model an image's local smoothness property. Intrinsically, the TV regularizer imposes sparsity constraints on the gradient maps of the image, which inevitably weakens the image texture structure and thus affects the quality of image restoration. To alleviate this issue, we propose a novel texture-preserved total variation (TPTV) regularizer for hyperspectral image (HSI) by introducing a weighting scheme. Specifically, the weights are assigned to the gradient maps of HSI, which help slack the sparsity constraint for the pixels with large variations, thus preserving the texture structure. Additionally, we elaborate an empirical method to learn the weights adaptively from observed HSI. Then, we propose an HSI denoising method based on the TPTV regularizer. Experimental results on synthetic and real HSI illustrate the superiority of our proposed method over other state-of-the-art methods. In addition, the proposed weighting scheme can be finely embedded into other TV regularizers and protect the image texture. The experiment results also demonstrate that the denoising performance of the original method is significantly improved after embedding the weighting scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3292518</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0849-9419</orcidid><orcidid>https://orcid.org/0000-0001-9645-5154</orcidid><orcidid>https://orcid.org/0000-0001-7912-3457</orcidid><orcidid>https://orcid.org/0000-0002-1089-0268</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2837144352 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Correlation Embedding Hyperspectral image denoising Hyperspectral imaging Image processing Image quality Image restoration Image texture Noise reduction Restoration Smoothness Sparsity Task analysis Texture Texture-preserved total variation Total variation Variation Weighting Weighting scheme |
title | Hyperspectral Image Denoising via Texture-preserved Total Variation Regularizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Denoising%20via%20Texture-preserved%20Total%20Variation%20Regularizer&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yang&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3292518&rft_dat=%3Cproquest_RIE%3E2837144352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837144352&rft_id=info:pmid/&rft_ieee_id=10173585&rfr_iscdi=true |