Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters
Photovoltaic (PV) cell-level inverters have recently gained popularity, as they provide individual maximum power point tracking and energy management, minimizing so the mismatch losses, caused by partial-shading, degradation effects and cell manufacturing variations in solar modules and arrays. In t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Rigogiannis, Nick Delianidis, Nick Mandourarakis, Ioannis Papanikolaou, Nick Koutroulis, Eftichios |
description | Photovoltaic (PV) cell-level inverters have recently gained popularity, as they provide individual maximum power point tracking and energy management, minimizing so the mismatch losses, caused by partial-shading, degradation effects and cell manufacturing variations in solar modules and arrays. In this article, a fully decentralized control scheme, applicable to PV cell-level inverters in cascaded H-bridge (CHB) configuration is presented. A feasibility study is carried out, considering individual PV cell inverter controllers, eliminating the need for data exchange among them, or with the central higher-level controller. At first, the overall concept of the control scheme in grid-tied operation is presented, highlighting the control, synchronization and cell-adjustment challenges. Two alternative controller configurations are presented and analyzed. The first one is based on the well-established sinusoidal pulse width modulation (SPWM) technique, with three different configurations i.e., (a) with active power maximization, (b) with reactive power regulation and (c) with reactive power minimization. The aforementioned schemes are analyzed and compared, highlighting their pros and cons. As for the second configuration, a multilevel-based self-synchronized/self-adjusted scheme is introduced, which minimizes switching losses and facilitates power line communication; however, power curtailment occurs in each cell. The mathematical analysis for the conduction angle calculation in each cell is presented. Finally, an experimental performance assessment for the aforementioned control strategies is performed (on a 4 cell CHB laboratory scale prototype), highlighting the advantages/disadvantages, as well as the implementation challenges of each one. |
doi_str_mv | 10.1109/ACCESS.2023.3293891 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2837139846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10177769</ieee_id><doaj_id>oai_doaj_org_article_89371316437941edaf3ed666325162e2</doaj_id><sourcerecordid>2837139846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3b9e1fcc6e866af45473ab102affe133a63000ea256eb4763a0e7e9d474127d33</originalsourceid><addsrcrecordid>eNpNUdFqGzEQPEoLDUm-oH0Q9Pnck1YnnR7da5wYDAm47auQTytXRrZS6Rxwvj5yL4Tsyy7DzOzAVNUX2swobdT3ed_frNcz1jCYAVPQKfqhumBUqBpaEB_f3Z-r65x3TZmuQK28qLYLNNlvfPDjiazHoz2R6Ighi2MIJ_ITBzyMyQT_jJb0sdwxkPXwF_dIXEzk4Q_pMYR6hU8YSG_yYGxh3tU_krdbJMvDE6YRU76qPjkTMl6_7svq9-LmV39Xr-5vl_18VQ-8UWMNG4XUDYPATgjjeMslmA1tmHEOKYARUMKjYa3ADZcCTIMSleWSUyYtwGW1nHxtNDv9mPzepJOOxuv_QExbbdLoh4C6UyApUMFBKk7RGgdohRDAWioYsuL1bfJ6TPHfEfOod_GYDiW-Zt1ZqzouCgsm1pBizgnd21fa6HNBeipInwvSrwUV1ddJ5RHxnYJKKYWCFxfvimY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837139846</pqid></control><display><type>article</type><title>Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Rigogiannis, Nick ; Delianidis, Nick ; Mandourarakis, Ioannis ; Papanikolaou, Nick ; Koutroulis, Eftichios</creator><creatorcontrib>Rigogiannis, Nick ; Delianidis, Nick ; Mandourarakis, Ioannis ; Papanikolaou, Nick ; Koutroulis, Eftichios</creatorcontrib><description>Photovoltaic (PV) cell-level inverters have recently gained popularity, as they provide individual maximum power point tracking and energy management, minimizing so the mismatch losses, caused by partial-shading, degradation effects and cell manufacturing variations in solar modules and arrays. In this article, a fully decentralized control scheme, applicable to PV cell-level inverters in cascaded H-bridge (CHB) configuration is presented. A feasibility study is carried out, considering individual PV cell inverter controllers, eliminating the need for data exchange among them, or with the central higher-level controller. At first, the overall concept of the control scheme in grid-tied operation is presented, highlighting the control, synchronization and cell-adjustment challenges. Two alternative controller configurations are presented and analyzed. The first one is based on the well-established sinusoidal pulse width modulation (SPWM) technique, with three different configurations i.e., (a) with active power maximization, (b) with reactive power regulation and (c) with reactive power minimization. The aforementioned schemes are analyzed and compared, highlighting their pros and cons. As for the second configuration, a multilevel-based self-synchronized/self-adjusted scheme is introduced, which minimizes switching losses and facilitates power line communication; however, power curtailment occurs in each cell. The mathematical analysis for the conduction angle calculation in each cell is presented. Finally, an experimental performance assessment for the aforementioned control strategies is performed (on a 4 cell CHB laboratory scale prototype), highlighting the advantages/disadvantages, as well as the implementation challenges of each one.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3293891</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cascaded H-bridge ; Configurations ; Controllers ; Data exchange ; Decentralized control ; Energy management ; Feasibility studies ; grid-tied inverter ; Inductors ; Inverters ; Mathematical analysis ; Maximum power point trackers ; Maximum power tracking ; multilevel inverter ; Optimization ; Performance assessment ; photovoltaic (PV) systems ; Photovoltaic cells ; power converter ; Power lines ; power management ; Pulse duration modulation ; Reactive power ; Synchronism ; Synchronization ; Voltage control</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3b9e1fcc6e866af45473ab102affe133a63000ea256eb4763a0e7e9d474127d33</citedby><cites>FETCH-LOGICAL-c409t-3b9e1fcc6e866af45473ab102affe133a63000ea256eb4763a0e7e9d474127d33</cites><orcidid>0000-0002-2156-0707 ; 0000-0001-8546-1196 ; 0000-0003-1285-8840 ; 0000-0002-3056-5606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10177769$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Rigogiannis, Nick</creatorcontrib><creatorcontrib>Delianidis, Nick</creatorcontrib><creatorcontrib>Mandourarakis, Ioannis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><title>Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters</title><title>IEEE access</title><addtitle>Access</addtitle><description>Photovoltaic (PV) cell-level inverters have recently gained popularity, as they provide individual maximum power point tracking and energy management, minimizing so the mismatch losses, caused by partial-shading, degradation effects and cell manufacturing variations in solar modules and arrays. In this article, a fully decentralized control scheme, applicable to PV cell-level inverters in cascaded H-bridge (CHB) configuration is presented. A feasibility study is carried out, considering individual PV cell inverter controllers, eliminating the need for data exchange among them, or with the central higher-level controller. At first, the overall concept of the control scheme in grid-tied operation is presented, highlighting the control, synchronization and cell-adjustment challenges. Two alternative controller configurations are presented and analyzed. The first one is based on the well-established sinusoidal pulse width modulation (SPWM) technique, with three different configurations i.e., (a) with active power maximization, (b) with reactive power regulation and (c) with reactive power minimization. The aforementioned schemes are analyzed and compared, highlighting their pros and cons. As for the second configuration, a multilevel-based self-synchronized/self-adjusted scheme is introduced, which minimizes switching losses and facilitates power line communication; however, power curtailment occurs in each cell. The mathematical analysis for the conduction angle calculation in each cell is presented. Finally, an experimental performance assessment for the aforementioned control strategies is performed (on a 4 cell CHB laboratory scale prototype), highlighting the advantages/disadvantages, as well as the implementation challenges of each one.</description><subject>Cascaded H-bridge</subject><subject>Configurations</subject><subject>Controllers</subject><subject>Data exchange</subject><subject>Decentralized control</subject><subject>Energy management</subject><subject>Feasibility studies</subject><subject>grid-tied inverter</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Mathematical analysis</subject><subject>Maximum power point trackers</subject><subject>Maximum power tracking</subject><subject>multilevel inverter</subject><subject>Optimization</subject><subject>Performance assessment</subject><subject>photovoltaic (PV) systems</subject><subject>Photovoltaic cells</subject><subject>power converter</subject><subject>Power lines</subject><subject>power management</subject><subject>Pulse duration modulation</subject><subject>Reactive power</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFqGzEQPEoLDUm-oH0Q9Pnck1YnnR7da5wYDAm47auQTytXRrZS6Rxwvj5yL4Tsyy7DzOzAVNUX2swobdT3ed_frNcz1jCYAVPQKfqhumBUqBpaEB_f3Z-r65x3TZmuQK28qLYLNNlvfPDjiazHoz2R6Ighi2MIJ_ITBzyMyQT_jJb0sdwxkPXwF_dIXEzk4Q_pMYR6hU8YSG_yYGxh3tU_krdbJMvDE6YRU76qPjkTMl6_7svq9-LmV39Xr-5vl_18VQ-8UWMNG4XUDYPATgjjeMslmA1tmHEOKYARUMKjYa3ADZcCTIMSleWSUyYtwGW1nHxtNDv9mPzepJOOxuv_QExbbdLoh4C6UyApUMFBKk7RGgdohRDAWioYsuL1bfJ6TPHfEfOod_GYDiW-Zt1ZqzouCgsm1pBizgnd21fa6HNBeipInwvSrwUV1ddJ5RHxnYJKKYWCFxfvimY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rigogiannis, Nick</creator><creator>Delianidis, Nick</creator><creator>Mandourarakis, Ioannis</creator><creator>Papanikolaou, Nick</creator><creator>Koutroulis, Eftichios</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2156-0707</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0003-1285-8840</orcidid><orcidid>https://orcid.org/0000-0002-3056-5606</orcidid></search><sort><creationdate>20230101</creationdate><title>Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters</title><author>Rigogiannis, Nick ; Delianidis, Nick ; Mandourarakis, Ioannis ; Papanikolaou, Nick ; Koutroulis, Eftichios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3b9e1fcc6e866af45473ab102affe133a63000ea256eb4763a0e7e9d474127d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cascaded H-bridge</topic><topic>Configurations</topic><topic>Controllers</topic><topic>Data exchange</topic><topic>Decentralized control</topic><topic>Energy management</topic><topic>Feasibility studies</topic><topic>grid-tied inverter</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Mathematical analysis</topic><topic>Maximum power point trackers</topic><topic>Maximum power tracking</topic><topic>multilevel inverter</topic><topic>Optimization</topic><topic>Performance assessment</topic><topic>photovoltaic (PV) systems</topic><topic>Photovoltaic cells</topic><topic>power converter</topic><topic>Power lines</topic><topic>power management</topic><topic>Pulse duration modulation</topic><topic>Reactive power</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigogiannis, Nick</creatorcontrib><creatorcontrib>Delianidis, Nick</creatorcontrib><creatorcontrib>Mandourarakis, Ioannis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Koutroulis, Eftichios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rigogiannis, Nick</au><au>Delianidis, Nick</au><au>Mandourarakis, Ioannis</au><au>Papanikolaou, Nick</au><au>Koutroulis, Eftichios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Photovoltaic (PV) cell-level inverters have recently gained popularity, as they provide individual maximum power point tracking and energy management, minimizing so the mismatch losses, caused by partial-shading, degradation effects and cell manufacturing variations in solar modules and arrays. In this article, a fully decentralized control scheme, applicable to PV cell-level inverters in cascaded H-bridge (CHB) configuration is presented. A feasibility study is carried out, considering individual PV cell inverter controllers, eliminating the need for data exchange among them, or with the central higher-level controller. At first, the overall concept of the control scheme in grid-tied operation is presented, highlighting the control, synchronization and cell-adjustment challenges. Two alternative controller configurations are presented and analyzed. The first one is based on the well-established sinusoidal pulse width modulation (SPWM) technique, with three different configurations i.e., (a) with active power maximization, (b) with reactive power regulation and (c) with reactive power minimization. The aforementioned schemes are analyzed and compared, highlighting their pros and cons. As for the second configuration, a multilevel-based self-synchronized/self-adjusted scheme is introduced, which minimizes switching losses and facilitates power line communication; however, power curtailment occurs in each cell. The mathematical analysis for the conduction angle calculation in each cell is presented. Finally, an experimental performance assessment for the aforementioned control strategies is performed (on a 4 cell CHB laboratory scale prototype), highlighting the advantages/disadvantages, as well as the implementation challenges of each one.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3293891</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2156-0707</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0003-1285-8840</orcidid><orcidid>https://orcid.org/0000-0002-3056-5606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2837139846 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Cascaded H-bridge Configurations Controllers Data exchange Decentralized control Energy management Feasibility studies grid-tied inverter Inductors Inverters Mathematical analysis Maximum power point trackers Maximum power tracking multilevel inverter Optimization Performance assessment photovoltaic (PV) systems Photovoltaic cells power converter Power lines power management Pulse duration modulation Reactive power Synchronism Synchronization Voltage control |
title | Feasibility Study of a Fully Decentralized Control Scheme for PV Cell-Level Cascaded H-Bridge Inverters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20of%20a%20Fully%20Decentralized%20Control%20Scheme%20for%20PV%20Cell-Level%20Cascaded%20H-Bridge%20Inverters&rft.jtitle=IEEE%20access&rft.au=Rigogiannis,%20Nick&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3293891&rft_dat=%3Cproquest_doaj_%3E2837139846%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837139846&rft_id=info:pmid/&rft_ieee_id=10177769&rft_doaj_id=oai_doaj_org_article_89371316437941edaf3ed666325162e2&rfr_iscdi=true |