Improved YOLOV5-Based UAV Pavement Crack Detection

In terms of highway crack detection, the combination of UAV and deep learning network has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (14), p.1-1
Hauptverfasser: Xing, Jian, Liu, Ying, Zhang, Guang-Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 14
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Xing, Jian
Liu, Ying
Zhang, Guang-Zhu
description In terms of highway crack detection, the combination of UAV and deep learning network has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the crack occupy few pixels in the image, and the image background is complex. Therefore, in this paper, DJI Mavic3 is used to establish the image data set of highway pavement cracks under complex background. And, the YOLOV5 deep learning model is improved by adding swin transformer structure and BIFPN feature pyramid. The improved YOLOV5 model achieved real-time pixel-level detection with detection accuracy of 90% and detection speed of 43.5 FPS. In terms of crack detection ability, the accuracy of the improved YOLOV5 reaches 4 pixels, and cracks of 1.2 mm can be detected in the experiment. Compared with the YOLOV7 model, the detection accuracy of the improved YOLOV5 model is increased by 15.4%. Compared with the YOLOV6 model, the calculated parameters of the improved YOLOV5 model are reduced by 59.25%. The proposed model is superior to other advanced models in crack detection.
doi_str_mv 10.1109/JSEN.2023.3281585
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837139604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10144553</ieee_id><sourcerecordid>2837139604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-be6680c3a8d24a39fb0dfbf953e07562847f2fd2ba6eebfc80510e6a4a47b8d83</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19iu7OdbaaiUYQVv0tGySWWi1Td1NC_57E9KDp5mB550ZHkKuKYwohfTu-W36MmLA-IgzTaWWJ2RApdQxVUKfdj2HWHD1cU4uQlgD0FRJNSBsvtn5-oBV9Jln-VLG9za0w2K8jF7tATe4baKJt-VX9IANls2q3l6SM2e_A14d65AsZtP3yVOc5Y_zyTiLS5aKJi4wSTSU3OqKCctTV0DlCpdKjqBkwrRQjrmKFTZBLFypQVLAxAorVKErzYfktt_bPvizx9CYdb332_akYZorytMEREvRnip9HYJHZ3Z-tbH-11AwnRrTqTGdGnNU02Zu-swKEf_xVAgpOf8Du4leAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837139604</pqid></control><display><type>article</type><title>Improved YOLOV5-Based UAV Pavement Crack Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Jian ; Liu, Ying ; Zhang, Guang-Zhu</creator><creatorcontrib>Xing, Jian ; Liu, Ying ; Zhang, Guang-Zhu</creatorcontrib><description>In terms of highway crack detection, the combination of UAV and deep learning network has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the crack occupy few pixels in the image, and the image background is complex. Therefore, in this paper, DJI Mavic3 is used to establish the image data set of highway pavement cracks under complex background. And, the YOLOV5 deep learning model is improved by adding swin transformer structure and BIFPN feature pyramid. The improved YOLOV5 model achieved real-time pixel-level detection with detection accuracy of 90% and detection speed of 43.5 FPS. In terms of crack detection ability, the accuracy of the improved YOLOV5 reaches 4 pixels, and cracks of 1.2 mm can be detected in the experiment. Compared with the YOLOV7 model, the detection accuracy of the improved YOLOV5 model is increased by 15.4%. Compared with the YOLOV6 model, the calculated parameters of the improved YOLOV5 model are reduced by 59.25%. The proposed model is superior to other advanced models in crack detection.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3281585</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Autonomous aerial vehicles ; BIFPN ; Computational modeling ; crack ; Cracks ; Deep learning ; Model accuracy ; Object recognition ; Optimization ; Pavements ; Pixels ; Proposals ; Road transportation ; Sensors ; swin transformer ; Transformers ; Unmanned Aerial Vehicle (UAV) ; Unmanned aerial vehicles ; YOLOV5</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-be6680c3a8d24a39fb0dfbf953e07562847f2fd2ba6eebfc80510e6a4a47b8d83</citedby><cites>FETCH-LOGICAL-c294t-be6680c3a8d24a39fb0dfbf953e07562847f2fd2ba6eebfc80510e6a4a47b8d83</cites><orcidid>0000-0001-7686-353X ; 0009-0009-1513-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10144553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10144553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Jian</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Guang-Zhu</creatorcontrib><title>Improved YOLOV5-Based UAV Pavement Crack Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In terms of highway crack detection, the combination of UAV and deep learning network has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the crack occupy few pixels in the image, and the image background is complex. Therefore, in this paper, DJI Mavic3 is used to establish the image data set of highway pavement cracks under complex background. And, the YOLOV5 deep learning model is improved by adding swin transformer structure and BIFPN feature pyramid. The improved YOLOV5 model achieved real-time pixel-level detection with detection accuracy of 90% and detection speed of 43.5 FPS. In terms of crack detection ability, the accuracy of the improved YOLOV5 reaches 4 pixels, and cracks of 1.2 mm can be detected in the experiment. Compared with the YOLOV7 model, the detection accuracy of the improved YOLOV5 model is increased by 15.4%. Compared with the YOLOV6 model, the calculated parameters of the improved YOLOV5 model are reduced by 59.25%. The proposed model is superior to other advanced models in crack detection.</description><subject>Accuracy</subject><subject>Autonomous aerial vehicles</subject><subject>BIFPN</subject><subject>Computational modeling</subject><subject>crack</subject><subject>Cracks</subject><subject>Deep learning</subject><subject>Model accuracy</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Pavements</subject><subject>Pixels</subject><subject>Proposals</subject><subject>Road transportation</subject><subject>Sensors</subject><subject>swin transformer</subject><subject>Transformers</subject><subject>Unmanned Aerial Vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>YOLOV5</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19iu7OdbaaiUYQVv0tGySWWi1Td1NC_57E9KDp5mB550ZHkKuKYwohfTu-W36MmLA-IgzTaWWJ2RApdQxVUKfdj2HWHD1cU4uQlgD0FRJNSBsvtn5-oBV9Jln-VLG9za0w2K8jF7tATe4baKJt-VX9IANls2q3l6SM2e_A14d65AsZtP3yVOc5Y_zyTiLS5aKJi4wSTSU3OqKCctTV0DlCpdKjqBkwrRQjrmKFTZBLFypQVLAxAorVKErzYfktt_bPvizx9CYdb332_akYZorytMEREvRnip9HYJHZ3Z-tbH-11AwnRrTqTGdGnNU02Zu-swKEf_xVAgpOf8Du4leAQ</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Xing, Jian</creator><creator>Liu, Ying</creator><creator>Zhang, Guang-Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7686-353X</orcidid><orcidid>https://orcid.org/0009-0009-1513-9770</orcidid></search><sort><creationdate>20230715</creationdate><title>Improved YOLOV5-Based UAV Pavement Crack Detection</title><author>Xing, Jian ; Liu, Ying ; Zhang, Guang-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-be6680c3a8d24a39fb0dfbf953e07562847f2fd2ba6eebfc80510e6a4a47b8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Autonomous aerial vehicles</topic><topic>BIFPN</topic><topic>Computational modeling</topic><topic>crack</topic><topic>Cracks</topic><topic>Deep learning</topic><topic>Model accuracy</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Pavements</topic><topic>Pixels</topic><topic>Proposals</topic><topic>Road transportation</topic><topic>Sensors</topic><topic>swin transformer</topic><topic>Transformers</topic><topic>Unmanned Aerial Vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>YOLOV5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Jian</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Guang-Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Jian</au><au>Liu, Ying</au><au>Zhang, Guang-Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved YOLOV5-Based UAV Pavement Crack Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>23</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In terms of highway crack detection, the combination of UAV and deep learning network has become a powerful detection means. However, in the actual detection, in order to take into account the detection efficiency, it is necessary to ensure that the detection area is large enough, which makes the crack occupy few pixels in the image, and the image background is complex. Therefore, in this paper, DJI Mavic3 is used to establish the image data set of highway pavement cracks under complex background. And, the YOLOV5 deep learning model is improved by adding swin transformer structure and BIFPN feature pyramid. The improved YOLOV5 model achieved real-time pixel-level detection with detection accuracy of 90% and detection speed of 43.5 FPS. In terms of crack detection ability, the accuracy of the improved YOLOV5 reaches 4 pixels, and cracks of 1.2 mm can be detected in the experiment. Compared with the YOLOV7 model, the detection accuracy of the improved YOLOV5 model is increased by 15.4%. Compared with the YOLOV6 model, the calculated parameters of the improved YOLOV5 model are reduced by 59.25%. The proposed model is superior to other advanced models in crack detection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3281585</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7686-353X</orcidid><orcidid>https://orcid.org/0009-0009-1513-9770</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2837139604
source IEEE Electronic Library (IEL)
subjects Accuracy
Autonomous aerial vehicles
BIFPN
Computational modeling
crack
Cracks
Deep learning
Model accuracy
Object recognition
Optimization
Pavements
Pixels
Proposals
Road transportation
Sensors
swin transformer
Transformers
Unmanned Aerial Vehicle (UAV)
Unmanned aerial vehicles
YOLOV5
title Improved YOLOV5-Based UAV Pavement Crack Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20YOLOV5-Based%20UAV%20Pavement%20Crack%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xing,%20Jian&rft.date=2023-07-15&rft.volume=23&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3281585&rft_dat=%3Cproquest_RIE%3E2837139604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837139604&rft_id=info:pmid/&rft_ieee_id=10144553&rfr_iscdi=true