Video-to-Music Recommendation Using Temporal Alignment of Segments

We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023, Vol.25, p.2898-2911
Hauptverfasser: Pretet, Laure, Richard, Gael, Souchier, Clement, Peeters, Geoffroy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2911
container_issue
container_start_page 2898
container_title IEEE transactions on multimedia
container_volume 25
creator Pretet, Laure
Richard, Gael
Souchier, Clement
Peeters, Geoffroy
description We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.
doi_str_mv 10.1109/TMM.2022.3152598
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837133461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9716820</ieee_id><sourcerecordid>2837133461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuC59RMkm2SYy1WhRZBW68hzc6WlO6mbrYH_70pLZ7eg3lvZvgIuQc2AmDmablYjDjjfCSg5KXRF2QARgJlTKnL7EvOqOHArslNSlvGQJZMDcjzd6gw0j7SxSEFX3yij02DbeX6ENtilUK7KZbY7GPndsVkFzZtnvZFrIsv3BxtuiVXtdslvDvrkKxmL8vpG51_vL5PJ3PquYGe1tJw1E5rxQWX-be18xWuuZZSQFYFbu2dd0IYbnAsZKkdU2hMqSR4V4kheTzt3Xfx54Cpt9t46Np80nItFAghx5BT7JTyXUypw9ruu9C47tcCs0dSNpOyR1L2TCpXHk6VgIj_caNgrDkTf2e1Y2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133461</pqid></control><display><type>article</type><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><source>IEEE Electronic Library (IEL)</source><creator>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</creator><creatorcontrib>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</creatorcontrib><description>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3152598</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adequacy ; Alignment ; Costs ; Cross-modal recommendation ; Image segmentation ; Music ; Ranking ; Recommender systems ; Segments ; self-supervised learning ; Semantics ; Sound tracks ; Task analysis ; Training ; triplet loss ; Videos</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.2898-2911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</citedby><cites>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</cites><orcidid>0000-0001-5224-315X ; 0000-0002-4960-0010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9716820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9716820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pretet, Laure</creatorcontrib><creatorcontrib>Richard, Gael</creatorcontrib><creatorcontrib>Souchier, Clement</creatorcontrib><creatorcontrib>Peeters, Geoffroy</creatorcontrib><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</description><subject>Adequacy</subject><subject>Alignment</subject><subject>Costs</subject><subject>Cross-modal recommendation</subject><subject>Image segmentation</subject><subject>Music</subject><subject>Ranking</subject><subject>Recommender systems</subject><subject>Segments</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Sound tracks</subject><subject>Task analysis</subject><subject>Training</subject><subject>triplet loss</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wcuC59RMkm2SYy1WhRZBW68hzc6WlO6mbrYH_70pLZ7eg3lvZvgIuQc2AmDmablYjDjjfCSg5KXRF2QARgJlTKnL7EvOqOHArslNSlvGQJZMDcjzd6gw0j7SxSEFX3yij02DbeX6ENtilUK7KZbY7GPndsVkFzZtnvZFrIsv3BxtuiVXtdslvDvrkKxmL8vpG51_vL5PJ3PquYGe1tJw1E5rxQWX-be18xWuuZZSQFYFbu2dd0IYbnAsZKkdU2hMqSR4V4kheTzt3Xfx54Cpt9t46Np80nItFAghx5BT7JTyXUypw9ruu9C47tcCs0dSNpOyR1L2TCpXHk6VgIj_caNgrDkTf2e1Y2c</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pretet, Laure</creator><creator>Richard, Gael</creator><creator>Souchier, Clement</creator><creator>Peeters, Geoffroy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5224-315X</orcidid><orcidid>https://orcid.org/0000-0002-4960-0010</orcidid></search><sort><creationdate>2023</creationdate><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><author>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adequacy</topic><topic>Alignment</topic><topic>Costs</topic><topic>Cross-modal recommendation</topic><topic>Image segmentation</topic><topic>Music</topic><topic>Ranking</topic><topic>Recommender systems</topic><topic>Segments</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Sound tracks</topic><topic>Task analysis</topic><topic>Training</topic><topic>triplet loss</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pretet, Laure</creatorcontrib><creatorcontrib>Richard, Gael</creatorcontrib><creatorcontrib>Souchier, Clement</creatorcontrib><creatorcontrib>Peeters, Geoffroy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pretet, Laure</au><au>Richard, Gael</au><au>Souchier, Clement</au><au>Peeters, Geoffroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video-to-Music Recommendation Using Temporal Alignment of Segments</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>2898</spage><epage>2911</epage><pages>2898-2911</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3152598</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5224-315X</orcidid><orcidid>https://orcid.org/0000-0002-4960-0010</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.2898-2911
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2837133461
source IEEE Electronic Library (IEL)
subjects Adequacy
Alignment
Costs
Cross-modal recommendation
Image segmentation
Music
Ranking
Recommender systems
Segments
self-supervised learning
Semantics
Sound tracks
Task analysis
Training
triplet loss
Videos
title Video-to-Music Recommendation Using Temporal Alignment of Segments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video-to-Music%20Recommendation%20Using%20Temporal%20Alignment%20of%20Segments&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Pretet,%20Laure&rft.date=2023&rft.volume=25&rft.spage=2898&rft.epage=2911&rft.pages=2898-2911&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3152598&rft_dat=%3Cproquest_RIE%3E2837133461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837133461&rft_id=info:pmid/&rft_ieee_id=9716820&rfr_iscdi=true