Video-to-Music Recommendation Using Temporal Alignment of Segments
We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.2898-2911 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2911 |
---|---|
container_issue | |
container_start_page | 2898 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Pretet, Laure Richard, Gael Souchier, Clement Peeters, Geoffroy |
description | We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods. |
doi_str_mv | 10.1109/TMM.2022.3152598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2837133461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9716820</ieee_id><sourcerecordid>2837133461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuC59RMkm2SYy1WhRZBW68hzc6WlO6mbrYH_70pLZ7eg3lvZvgIuQc2AmDmablYjDjjfCSg5KXRF2QARgJlTKnL7EvOqOHArslNSlvGQJZMDcjzd6gw0j7SxSEFX3yij02DbeX6ENtilUK7KZbY7GPndsVkFzZtnvZFrIsv3BxtuiVXtdslvDvrkKxmL8vpG51_vL5PJ3PquYGe1tJw1E5rxQWX-be18xWuuZZSQFYFbu2dd0IYbnAsZKkdU2hMqSR4V4kheTzt3Xfx54Cpt9t46Np80nItFAghx5BT7JTyXUypw9ruu9C47tcCs0dSNpOyR1L2TCpXHk6VgIj_caNgrDkTf2e1Y2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837133461</pqid></control><display><type>article</type><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><source>IEEE Electronic Library (IEL)</source><creator>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</creator><creatorcontrib>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</creatorcontrib><description>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3152598</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adequacy ; Alignment ; Costs ; Cross-modal recommendation ; Image segmentation ; Music ; Ranking ; Recommender systems ; Segments ; self-supervised learning ; Semantics ; Sound tracks ; Task analysis ; Training ; triplet loss ; Videos</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.2898-2911</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</citedby><cites>FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</cites><orcidid>0000-0001-5224-315X ; 0000-0002-4960-0010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9716820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9716820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pretet, Laure</creatorcontrib><creatorcontrib>Richard, Gael</creatorcontrib><creatorcontrib>Souchier, Clement</creatorcontrib><creatorcontrib>Peeters, Geoffroy</creatorcontrib><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</description><subject>Adequacy</subject><subject>Alignment</subject><subject>Costs</subject><subject>Cross-modal recommendation</subject><subject>Image segmentation</subject><subject>Music</subject><subject>Ranking</subject><subject>Recommender systems</subject><subject>Segments</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Sound tracks</subject><subject>Task analysis</subject><subject>Training</subject><subject>triplet loss</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wcuC59RMkm2SYy1WhRZBW68hzc6WlO6mbrYH_70pLZ7eg3lvZvgIuQc2AmDmablYjDjjfCSg5KXRF2QARgJlTKnL7EvOqOHArslNSlvGQJZMDcjzd6gw0j7SxSEFX3yij02DbeX6ENtilUK7KZbY7GPndsVkFzZtnvZFrIsv3BxtuiVXtdslvDvrkKxmL8vpG51_vL5PJ3PquYGe1tJw1E5rxQWX-be18xWuuZZSQFYFbu2dd0IYbnAsZKkdU2hMqSR4V4kheTzt3Xfx54Cpt9t46Np80nItFAghx5BT7JTyXUypw9ruu9C47tcCs0dSNpOyR1L2TCpXHk6VgIj_caNgrDkTf2e1Y2c</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pretet, Laure</creator><creator>Richard, Gael</creator><creator>Souchier, Clement</creator><creator>Peeters, Geoffroy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5224-315X</orcidid><orcidid>https://orcid.org/0000-0002-4960-0010</orcidid></search><sort><creationdate>2023</creationdate><title>Video-to-Music Recommendation Using Temporal Alignment of Segments</title><author>Pretet, Laure ; Richard, Gael ; Souchier, Clement ; Peeters, Geoffroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f492e8a8872324194bacdeb284431eb271abcaca33929e63458a07e995741cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adequacy</topic><topic>Alignment</topic><topic>Costs</topic><topic>Cross-modal recommendation</topic><topic>Image segmentation</topic><topic>Music</topic><topic>Ranking</topic><topic>Recommender systems</topic><topic>Segments</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Sound tracks</topic><topic>Task analysis</topic><topic>Training</topic><topic>triplet loss</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pretet, Laure</creatorcontrib><creatorcontrib>Richard, Gael</creatorcontrib><creatorcontrib>Souchier, Clement</creatorcontrib><creatorcontrib>Peeters, Geoffroy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pretet, Laure</au><au>Richard, Gael</au><au>Souchier, Clement</au><au>Peeters, Geoffroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video-to-Music Recommendation Using Temporal Alignment of Segments</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>2898</spage><epage>2911</epage><pages>2898-2911</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>We study cross-modal recommendation of musictracks to be used as soundtracks for videos. This problem is known as the music supervision task. We build on a self-supervised system that learns a content association between music and video. In addition to the adequacy of content, adequacy of structure is crucial in music supervision to obtain relevant recommendations. We propose a novel approach to significantly improve the system's performance using structure-aware recommendation. The core idea is to consider not only the full audio-video clips, but rather shorter segments for training and inference. We find that using semantic segments and ranking the tracks according to sequence alignment costs significantly improves the results. We investigate the impact of different ranking metrics and segmentation methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3152598</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5224-315X</orcidid><orcidid>https://orcid.org/0000-0002-4960-0010</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.2898-2911 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2837133461 |
source | IEEE Electronic Library (IEL) |
subjects | Adequacy Alignment Costs Cross-modal recommendation Image segmentation Music Ranking Recommender systems Segments self-supervised learning Semantics Sound tracks Task analysis Training triplet loss Videos |
title | Video-to-Music Recommendation Using Temporal Alignment of Segments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video-to-Music%20Recommendation%20Using%20Temporal%20Alignment%20of%20Segments&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Pretet,%20Laure&rft.date=2023&rft.volume=25&rft.spage=2898&rft.epage=2911&rft.pages=2898-2911&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3152598&rft_dat=%3Cproquest_RIE%3E2837133461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837133461&rft_id=info:pmid/&rft_ieee_id=9716820&rfr_iscdi=true |